Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 234))

  • 61 Accesses

Abstract

The accuracy precision of the stress electrocardiogram has been assessed using a meta-analysis of 147 studies that included a total of 24,074 patients [1, 2]. The mean values for the sensitivity and specificity in the 58 studies that included only patients without antecedents of myocardial infarction were 67% and 72%, respectively. As can be seen in Table 1, the results improve when patients who have ST segment depression in the basal ECG, those who are being treated with digoxin and those who have criteria of left ventricular hypertrophy are excluded. These values highlight that the conventional exercise test is an investigation that is more specific than sensitive. Fortunately its sensitivity is lower only with respect to patients with less serious coronary artery disease such as those with single vessel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Detrano R, Gianroosi R, Froelicher V. The diagnostic accuracy of the exercise electrocardiogram: a meta-analysis of 22 years of research. Prog Cardiovasc Dis. 1989; 32: 173–206.

    CAS  PubMed  Google Scholar 

  2. Gianrrosi R, Detrano R, Mulvihill D et al. Exercise-induced ST depression in the diagnosis of coronary artery disease. Metaanalysis. Circulation 1989; 80: 87–98.

    Google Scholar 

  3. Esplugas E, Molina C, Ramos M et al. Gammagrafia miocárdica y electrocardiograma al esfuerzo en pacientes con angina y coronariografia normal. Rev Esp Cardiol 1982; 35: 393–393.

    CAS  PubMed  Google Scholar 

  4. Candell-Riera J, Ortega D, Alijarde M et al. Gammagrafia miocárdica con 201Tl: sensibilidad, especificidad y valor predictivo. Med Clín (Barc) 1984; 82: 656–660.

    CAS  Google Scholar 

  5. Castell J, Fraile M, Candell J et al. El rendimiento diagnóstico de la gammmagrafia de esfuerzo con talio y la “mayoría silenciosa”. Rev Esp Cardiol 1988; 41: 12–19.

    PubMed  Google Scholar 

  6. Candell-Riera J, Castell J, Ortega D et al. Diagnostic accuracy of radionuclide techniques in patients with equivocal electrocardiographic exercise testing. Eur Heart J 1990; I I: 980–989.

    Google Scholar 

  7. Santana-Boado C, Candell-Riera J, Castell J et al. Diagnóstico de la enfermedad coronaria mediante la tomogammagrafia de esfuerzo con isonitrilos-tecnecio-99m. Med Clín (Barc.) 1995; 105: 201–204.

    CAS  Google Scholar 

  8. Candell-Riera J, Bardají A, Castell-Conesa J, Jurado JA, Magriña J. IV. La cardiología nuclear en la cardiopatía isquémica crónica. Rev Esp Cardiol 1997; 50: 83–91.

    CAS  PubMed  Google Scholar 

  9. Castell J, Santana-Boado C, Candell-Riera J et al. La tomogammagrafia miocárdica y el ECG de esfuerzo en el diagnóstico de la enfermedad coronaria multivaso. Rev Esp Cardiol 1997; 50: 635–642.

    Google Scholar 

  10. Santana-Boado C, Candell-Riera J, Castell J et al. Diagnostic accuracy of 99mTc-isonitrile SPET in women and in men. J Nucl Med 1998; 39: 751–755.

    CAS  PubMed  Google Scholar 

  11. Gibson RS, Watson DD (1983) Clinical applications of myocardial perfusion scintigraphy with thallium-201, in Yu PN and Goodwin JF (eds.), Progress in cardiology, Lea & Febiger, Philadelphia, pp. 67–112.

    Google Scholar 

  12. Port SC, Oshima M, Ray G et al. Assessment of single vessel coronary artery disease: Results of exercise electrocardiography, thallium-201 myocardial perfusion imaging and radionuclide angiography. J Am Coll Cardiol 1985; 6: 75–83.

    CAS  PubMed  Google Scholar 

  13. Gibson RS, Beller GA. (1983) Should exercise electrocardiographic testing be replaced by radioisotopic methods?, in Rahimtoola SH (ed.), Controversies in coronary artery disease, F. A. Davis Company, Philadelphia, pp. 1–31.

    Google Scholar 

  14. Gerson MC. (1987) Test accuracy, test selection, and test result interpretation in chronic coronary artery disease, in Gerson MC (ed.), Cardiac nuclear medicine, McGraw-Hill Book Company, New York, pp. 309–347.

    Google Scholar 

  15. Maddahi J, García EV, Berman DS. (1988) Quantitative thallium-201 myocardial perfusion scintigraphy: The method and its clinical applications in coronary artery disease, in Lyons KP (ed.), Cardiovascular nuclear medicine, Appleton & Lange, Norwalk, pp. 145–161.

    Google Scholar 

  16. Kim W, Lipton MJ. Exercise thallium-201 single photon emission computed tomography for the diagnosis of coronary artery disease: What should we expect from SPECT ?. J Am Coll Cardiol; 15: 330–333.

    Google Scholar 

  17. Berman DS, Kiat H, Germano G et al. (1995) Tc-Sestamibi SPECT in cardiac SPECT imaging, in De Puey EG, Berman DS, Garcia EV (eds.), Cardiac SPECT imaging, Raven Press, New York, pp. 121–146.

    Google Scholar 

  18. Fintel DJ, Links JM, Brinker JA et al. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 1989; 13: 600–612.

    CAS  PubMed  Google Scholar 

  19. Kiat H, Berman DS, Maddahi J. Comparison of planar and tomographic exercise thallium-201 imaging methods for the evaluation of coronary artery disease. J Am Coll Cardiol 1989; 13: 613–616.

    CAS  PubMed  Google Scholar 

  20. Garcia EV, Van Train K, Madahi J et al. Quantification rotational thallium-201 myocardial tomography. J Nucl Med 1985; 26: 17–26.

    CAS  PubMed  Google Scholar 

  21. Mahmarian JJ (1999) State of the art for coronary artery disease, in Zaret BL and Beller GA (eds.), Nuclear Cardiology. State of the art and future directions, Mosby, St. Louis, pp.237–272.

    Google Scholar 

  22. Garcia EV, DePuey EG, Sonnemaker RE et al. Quantification of the reversibility of stress induced thallium-201 myocardial perfusion defects: a multicenter trial using bull’s-eye polar maps and standard normal limits. J Nucl Med 1990; 31: 1761–1765.

    CAS  PubMed  Google Scholar 

  23. Van Train KF, Garcia EV, Cooked Al (1995) Quantitative analysis of SPECT myocardial perfusion, in De Puey EG, Berman DS and Garcia EV (eds.), Cardiac SPECT Imaging, Raven Press, New York, pp. 4974.

    Google Scholar 

  24. Kiat H, Van Train, Maddahi J et al. Development and prospective application of quantitative 2-day stress-rest Tc-99m methoxy isobultil isonotrile SPECT for the diagnosis of coronary artery disease. Am Heart J 1990; 120: 1255–1266.

    CAS  PubMed  Google Scholar 

  25. Wackers FJT (1995) State of the art in coronary artery disease detection: technetium-99m labeled myocardial perfusion imaging agents. Detection of coronary artery disease, in Zaret BL and Beller GA (eds.), Nuclear Cardiology. State of the art and future directions. Mosby, St. Louis, pp. 273–280.

    Google Scholar 

  26. Van Train KF, Areeda J, Garcia EV et al. Quantitative of same day Tc-99m-Sestamibi myocardial SPECT: Multicenter trial validation. J Nucl Med 1992; 33: 876. (Abstr.).

    Google Scholar 

  27. Rigo P, Leclercq B, Itti R et al. Technetium-99m-Tetrofosmin myocardial imagin: a comparison with Thallium-201 and angiography. J Nucl Med 1994; 35: 587–593.

    CAS  PubMed  Google Scholar 

  28. Takahashi N, Tamaki N, Tadamura E et al. Combined assessment of regional perfusion and wall motion in patients with coronary artery disease with technetium 99m tetrofosmin. J Nucl Cardiol 1994; 1: 29–38.

    CAS  PubMed  Google Scholar 

  29. Sridhara B, Sochor H, Rigo P et al. Myocardial single-photon emission computed tomographic imaging with technetium 99m tetrofosmin: Stess-rest imaging with same-day and separate-day rest imaging. J Nucl Cardiol 1994; 1: 138–143.

    CAS  PubMed  Google Scholar 

  30. Santana Boado C, García Burillo A, Candell Riera J et al. SPET 99mTc-Tetrofosmin one day protocol in the diagnosis of CAD. QJ Nucl Med 1997; 41: 227. (Abstr.).

    Google Scholar 

  31. Santana Boado C, García Burillo A, Campreciós M et al. 99mTc-tetrofosmin SPECT one day protocol in the diagnosis of CAD. J Nucl Cardiol 1997; 4: 35. (Abstr.).

    Google Scholar 

  32. Tamaky N, Takahashi N, Kawamoto M et al. Myocardial tomography using technetium-99m-Tetrofosmin to evaluate coronary artery disease. J Nucl Med 1994; 35: 594–600.

    Google Scholar 

  33. Thorley PJ, Ball J, Sheard KL et al. Evaluation of 99mTc-tetrofosmin as a myocardial perfusion agent in routine clinical use. Nucl Med Commun, 1995; 16: 733–740.

    CAS  PubMed  Google Scholar 

  34. Heo J, Cave V, Wasserleben V, Iskandrian A. Planar and tomographie imaging with technetium 99m-labeled tetrofosmin: Correlation with thallium 201 and coronary angiography. J Nucl Cardiol 1994; 1: 317–324.

    CAS  PubMed  Google Scholar 

  35. Hendel R, Parker A, Wackers FJ et al. Reduced variability of interpretation and improved image quality with a technetium 99m myocardial perfusion agent: Comparison of thallium 201 and technetium 99m-labeled tetrosfosmin. J Nucl Cardiol 1994; 1: 509–514.

    CAS  PubMed  Google Scholar 

  36. Kolter TS, Diamond GA. Exercise thallium-201 scintigraphy in the diagnosis and prognosis of coronary artery disease. Arch Int Med 1990; 113: 684–702.

    Google Scholar 

  37. Pennell DJ, Prvulovich E (1995) Imaging techniques, in Pennell DJ and Prvulovich E (eds.), Nuclear Cardiology, British Nuclear Medicine Society, London, pp. 17–33.

    Google Scholar 

  38. Udelson JE, Leppo JA (1994) Diagnosis of coronary artery disease, in Murray IPC, ElI PJ and Strauss HW (eds.) Nuclear Medicine, pp. 1129–1156.

    Google Scholar 

  39. Wackers FJ. Comparison of thallium-201 and technetium-99m methoxyisobutyl isonitrile. Am J Cardiol 1992; 70: 30E–34E.

    CAS  PubMed  Google Scholar 

  40. Berman DS. Technetium-99m myocardial perfusion imaging agents and their relation to thallium-201. Am J Cardiol 1990; 66: 1E–4E.

    CAS  PubMed  Google Scholar 

  41. Hicks R (1994) Myocardial perfusion scintigraphy techniques using single photon radiotracers, in I.P.C. Murray, P.J. ElI and H.W. Strauss (eds.), Nuclear Medicine, pp. 1083–1098.

    Google Scholar 

  42. Taillefer R, Lambert R, Dupra SG et al. Clinical comparison between thallium-201 and Tc-99m-methoxy isobutil - isonitrile (HEXAMIBI) myocardial perfusion imaging for detection of coronary artery disease. Eur J Nucl Med 1989; 15: 280–286.

    CAS  PubMed  Google Scholar 

  43. Alexander C, Oberhausen E. Myocardial scintgraphy. Sem Nucl Med 1995; 25: 195–201.

    CAS  Google Scholar 

  44. Kiat H, Maddahi J, Roy LT et al. Comparison of tecnetium 99m methoxy isobutil isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989; 117: 1–11.

    CAS  PubMed  Google Scholar 

  45. Iskandrian AS, Heo J, Kong B, Lyons E, Marsch A. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol 1989; 64: 270–275.

    CAS  PubMed  Google Scholar 

  46. Kahn JK, Mc Ghie I, Akers MS et al. Quantitative rotacional tomography with 201TI and99mTc 2-methoxyisobutil-isonitrile: a direct comparison in normal individual and patients with coronary artery disease. Circulation 1989; 79: 1282–1293.

    CAS  PubMed  Google Scholar 

  47. Candell Riera J. Técnicas de imagen para la detección de isquemia miocárdica: ecocardiografia de estrés farmacológico o estudios isotópicos de perfusión? Perspectiva isotópica. Rev Esp Cardiol 1995; 48: 159–163.

    CAS  PubMed  Google Scholar 

  48. Van Train KF, Areeda J, Garcia EV et al. Quantitative same day rest-stress technetium-99m-Sestamibi SPECT: Definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993; 34: 1494–1502.

    PubMed  Google Scholar 

  49. Van Train KF, Garcia EV, Maddahi J et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomogramas. J Nucl Med 1994; 35: 609–618.

    PubMed  Google Scholar 

  50. Maddahi J, Kiat H, Van Train KF et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in evaluation of coronary artery disease. Am J Cardiol 1990; 66: 55E–62E.

    CAS  PubMed  Google Scholar 

  51. Maddahi J, Kiat H, Friedman G et al. (1992) Tc-99m sestamibi myocardial perfusion imaging for evaluation of coronary artery disease, in Zaret BL, Beller GA (eds.), Nuclear Cardiology, CV Mosby, St. Louis, pp. 191–200.

    Google Scholar 

  52. Beller GA. Current status of nuclear cardiology techniques. Curr Prob Cardiol 1991; 16: 447–535.

    Google Scholar 

  53. Picard M, Dupras G, Taillefer R. Myocardial perfusion agents: Compared biodistribution of 201-Tallium, Tc-99m-tertiary butyl isonitrile (TBI) and Tc-99m-methoxy isobutil isonitrile (MIBI). J Nucl Med 1987; 28 (sulp): 654–655.

    Google Scholar 

  54. Piwnica-Worms D, Chiu ML, Kronauge JF. Divergent kinetics of 201Tl and 99mTc-sestamibi in cultured chick ventricular myocites during ATP depletion. Circulation 1992; 85: 1531–1541.

    CAS  PubMed  Google Scholar 

  55. Borges-Neto S, Coleman RE, Jones RH. Perfusion and function at rest and treadmill exercise using technetium-99m Sestamibi: Comparison of one and two day protocols in normal volunteers. J Nucl Med 1990; 31: 1128–1132.

    CAS  PubMed  Google Scholar 

  56. Berman DS, Kiat H, Van Train K et al. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Sem Nucl Med 1991; 21: 190–212.

    CAS  Google Scholar 

  57. Sochor H. Tecnetium-99m sestamibi in chronic coronary artery disease: the european experience. Am J Cardiol 1990; 66: 91E–96E.

    CAS  PubMed  Google Scholar 

  58. Berman DS, Kiat HS, Van Train KF et al. Myocardial perfusion imaging with technetium-99m-Sestamibi: Comparative analysis of available imaging protocols. J Nucl Med 1994; 35: 681–688.

    CAS  PubMed  Google Scholar 

  59. Tamaki N, Yonekura Y, Kodama S et al. Stress thallium-201 transaxial emission computed tomography: Quantitative vs qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol 1984; 4: 1213–1221.

    CAS  PubMed  Google Scholar 

  60. De Pascuale EE, Nody AC, DePuey EG et al. Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 1988; 77: 316–327.

    Google Scholar 

  61. Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomography imaging in coronary artery disease: Analysis of 461 patients. J Am Coll Cardiol 1989; 14: 1477–1486.

    CAS  PubMed  Google Scholar 

  62. Mahmarian JJ, Boyce TM, Goldberg RK et al. Quantitative exercise thallium-201 single thoton emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol 1990; 15: 318–329.

    CAS  PubMed  Google Scholar 

  63. Van Train KF, Maddahi J, Berman DS et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990; 31: 1168–1179.

    PubMed  Google Scholar 

  64. Maddahi J, Van Train K, Prigent F et al. Quantitative single thoton emission computed thallium-201 tomography for detection and localization of coronary artery disease: Optimization and prospective validation of a new technique. J Am Coll Cardiol 1989; 14: 1689–1699.

    CAS  PubMed  Google Scholar 

  65. Higley B, Smith FW, Smith T et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl)phosphino]ethane: Human biodistribution, dosimetry and sefety of a new myocardial perfusion imaging agent. J Nucl Med 1993; 34: 30–38.

    CAS  PubMed  Google Scholar 

  66. Sinusas AJ, Beller GA, Watson DD. Cardiac imaging with technetium 99m-labeled isonitriles. J Thorac Imaging 1990; 5: 20–30.

    CAS  PubMed  Google Scholar 

  67. Dahlberg ST, Leppo JA. Myocardial kinetics of radiolabeled perfusion agents: Basis for perfusion imaging. J Nucl Cardiol 1994; 189–197.

    Google Scholar 

  68. Beller GA, Watson DD. Physiological of myocardial perfusion imaging with technetium 99m agents. Semin Nucl Med 1991; 21: 173–181.

    CAS  PubMed  Google Scholar 

  69. Taillefer MD, Dupras G, Sporin V et al. Myocardial perfusion imaging with a new radiotracer, technetium-99m-hexamibi (methoxy isobutil isonitrile): comparison with thallium-201 imaging. Clin Nucl Med 1989; 14: 89–96.

    CAS  PubMed  Google Scholar 

  70. Wackers FJ, Berman DS, Maddahi J et al. Technetium-99m hexakis 2 methoxyisobutil isonitrile (hexamibi): Human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989; 30: 301–311.

    CAS  PubMed  Google Scholar 

  71. Garcia EV, Cooke D, Van Train KF et al. Technical aspect of myocardial SPECT technetium-99m sestamibi. Am J Cardiol 1990; 66: 23E–31E.

    CAS  PubMed  Google Scholar 

  72. Udelson JE. Choosing a thallium-201 or technetium 99m sestamibi imaging protocol. J Nucl Cardiol 1994; I: S99–S108.

    Google Scholar 

  73. Berger BC, Watson DD, Taylor GJ et al. Quantitative thallium-201 exercise scintigraphy for detection of coronary artery disease. J Nucl Med 1981; 22: 585–593.

    CAS  PubMed  Google Scholar 

  74. Maddahi J, Garcia EV, Berman DS et al. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout thallium-201. Circulation 1981; 64: 924–935.

    CAS  PubMed  Google Scholar 

  75. Gibbons L. The value of maximal versus submaximal treadmill testing. J Cardiac Rehab 1981; 1: 362–368.

    Google Scholar 

  76. Froelicher VF (1984) Standard exercise testing, in Froelicher VF (ed.), Exercise testing & training, Year Book Medical Publishers Inc., Chicago, pp. 1–11.

    Google Scholar 

  77. Weiner DA, Ryan TJ, McCabe CH et al. Exercise stress testing. Correlations among history of angina, ST-segment response and prevalence of coronary artery disease in the coronary artery surgery study (CASS). N Engl J Med 1979; 301: 230–235.

    CAS  PubMed  Google Scholar 

  78. Patterson RE, Eng C, Horowitz SF. Practical diagnosis of coronary artery disease: A Bayes’ theorem nomogram to correlate clinical data with noninvasive exercise tests. Am J Cardiol 1984; 53: 252–256.

    CAS  PubMed  Google Scholar 

  79. Hlatky MA, Pryor DB, Harrell FE et al. Factors affecting sensitivity and specificity of exercise electrocardiography. Multivariable analysis. Am J Cardiol 1984; 77: 64–71.

    CAS  Google Scholar 

  80. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979; 300: 1350–1358.

    CAS  PubMed  Google Scholar 

  81. Rozanski A, Berman D. The efficacy of cardiovascular nuclear medicine exercise studies. Sem Nucl Med 1987; 2: 104–102.

    Google Scholar 

  82. Rozanski A. Referral bias and the efficacy of radionuclide stress tess: problems and solutions. J Nucl Med 1992; 33: 2074–2079.

    CAS  PubMed  Google Scholar 

  83. Proudfit WL, Shirey EK, Sones FM. Selective cine coronary angiography: Correlation with clinical findings in 1000 patients. Circulation 1966; 33: 901–910.

    CAS  PubMed  Google Scholar 

  84. Campeau L, Bourassa MG, Bois MA et al. Clinical significance of selective coronary cinearteriography. Canad M A J 1968; 99: 1063–1068.

    CAS  Google Scholar 

  85. Friesinger GC, Smith RF. Correlation of electrocardiographic studies and arteriographic findings with angina pectoris. Circulation 1972; 56: 1173–1183.

    Google Scholar 

  86. McConahay DR, McCallister BD, Smith RE. Post-exercise electrocardiography: Correlation with coronary arteriography and left ventricular hemodynamics. Am J Cardiol 1971; 28: 1–9.

    CAS  PubMed  Google Scholar 

  87. Diamond G: Clinical diagnosis of coronary artery diseases using Bayes theorem. Myocardium 1989; 1: 911.

    Google Scholar 

  88. Patterson RE, Horowitz SF. Importance of epidemiology and biostatistics in deciding clinical strategies for using diagnostic tests: a simplified approach using examples from coronary artery disease. J Am Coll Cardiol 1989; 13: 1653–1665.

    CAS  PubMed  Google Scholar 

  89. Olona-Cabases M. (1994) The probability of a correct diagnosis, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp. 348–358.

    Google Scholar 

  90. Gitler B, Fishbach M, Steingart RM. Use of electrocardiographic thallium exercise testing in clinical practice. J Am Coll Cardiol 1984; 3: 262–271.

    CAS  PubMed  Google Scholar 

  91. Diamond GA, Denton TA, Berman DS, Cohen I. Prior restraint: A Bayesian perspective on the optimization of technology utilization for diagnosis of coronary artery diseas. Am J Cardiol 1995; 76: 8286.

    Google Scholar 

  92. Candell Riera J (1994) Prognostic evaluation and follow-up of chronic coronary artery disease“, in Candell-Riera J and Ortega-Alcalde D (eds.), Nuclear cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp. 216–240.

    Google Scholar 

  93. Steinberg EP, Klag MJ, Bakal CW et al. Exercise thallium scans: patterns of use and impact on management of patients with known or suspected coronary artery disease. Am J Cardiol 1987; 59: 50–55.

    CAS  PubMed  Google Scholar 

  94. Mañé S, Moragas G, Martinez P et al. Evolución de las indicaciones de la prueba de esfuerzo con 201-talio en nuestro medio. Rev Esp Med Nucl 1990; 9 (Supl. 1): 9 (Abstr.).

    Google Scholar 

  95. Johnson LL. Sex specific issues relating to nuclear cardiology. J Nucl Cardiol 1995; 2: 339–348.

    CAS  PubMed  Google Scholar 

  96. Miller DD. Evaluation of coronary artery disease in women. Current Opinion in Cardiolgy 1996; 11: 447–453.

    CAS  Google Scholar 

  97. Steingart RM, Packer M, Hamm P et al. Sex differences in the managenent of coronary artery disease. N Engl J Med 1991; 325: 226–230.

    CAS  PubMed  Google Scholar 

  98. Hachamovitch R, Berman D, Kiat H et al. Gender-related diffemces in clinical management after exercise nuclear testing. J Am Coll Cardiol 1995; 26: 1457–1464.

    CAS  PubMed  Google Scholar 

  99. Khan SS, Nessim S, Gray R et al. Increased mortality of women in coronary artery bypass surgery: Evidence for referral bias. Ann Inter Med 1990; 112: 561–567.

    CAS  Google Scholar 

  100. Ayanian JZ, Epstein AM. Differences in the use of procedures between women and men hospitalized for coronary heart disease. N Engl J Med 1991; 325: 221–225.

    CAS  PubMed  Google Scholar 

  101. Maynard C, Beshansky JR, Griffith JL et al_ Influence of sex on the use of cardiac procedures in patients presenting to the emergency department. A prospective multicenter study. Circulation 1996; 94: 93–98.

    Google Scholar 

  102. Malenka DJ, O’Conor GT, Quinton H et al. Differences in outcomes between women and men associated with percutaneous transluminal coronary angioplasty. A regional prospective study of 13061 procedures. Circulation 1996; 94: 99–104.

    Google Scholar 

  103. Roeters van Lennep JE, Borm JJJ, Zwinderman AH, Pauwels EKJ, Bruschke AVG, van der Wall EE. No gender bias in referral for coronary angiography after myocardial perfusion scintigraphy with technetium-99m tetrofosmin. J Nucl Cardiol 1999; 7: 596–604.

    Google Scholar 

  104. Diamond GA. ‘Reverend Bayes’ Silent majority. An alternative factor affecting sensitivity and specificity of exercise electrocardiography. Am J Cardiol 1986; 57: 1175–1180.

    CAS  PubMed  Google Scholar 

  105. Mullani NA, Caras D, Ahn C et al. Fewer women than men have positive SPECT and PET cardiac findings among patients with no history of heart disease. J Nucl Med 2000; 41: 263–268.

    CAS  PubMed  Google Scholar 

  106. Strauss HW, Harrinson K, Langan JK et al. Thallium-201 for myocardial imaging to regional myocardial perfusion. Circulation 1975; 51: 641–645.

    CAS  PubMed  Google Scholar 

  107. Leppo JA, Meerdink DJ. Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ30217), (SQ30014) and thallium. J Nucl Med 1990; 31: 67–74.

    CAS  PubMed  Google Scholar 

  108. Iskandrian AS, Verani MS (1996) Exercise perfusion imaging in coronary artery disease: Exercise testing and physiology, in Iskandrian AS and Verani MS (eds.), Nuclear Cardiac Imaging: Principles and applications. F.A. Davis Company, Philadelphia, pp. 46–72.

    Google Scholar 

  109. Kelly JD, Foster AM, Higley B et al. Tecnetium-99m-Tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 1993; 34: 222–227.

    CAS  PubMed  Google Scholar 

  110. Val PG, Chaimant BR, Waters DD. Diagnostic accuracy of exercise ECG lead system in clinical subsets of woman. Circulation 1982; 65: 1465–1472.

    Google Scholar 

  111. Taillefer R, DePuey GE, Udelson J et al. Comparative diagnostic accuracy of thallium-201 and Tc-99m sestamibi (perfusion and gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997; 29: 69–77.

    CAS  PubMed  Google Scholar 

  112. Iskandrian AE, Heo J, Nallamothu N. Detection of coronary artery disease with use of stress single-photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 1997; 4: 329–335.

    CAS  PubMed  Google Scholar 

  113. Chae SC, Heo H, Iskandrian AS et al. Identification of extensive coronary artery disease in women by exercise single photon emission computed tomographic (SPECT) thallium imaging. J Am Coll Cardiol 1993; 21: 1305–1310

    CAS  PubMed  Google Scholar 

  114. Friedman TD, Greene AC, lskandrian AS et al. Exercise thallium-201 myocardial scintigraphy in women: Correlation with coronary arteriography. Am J Cardiol 1992; 49: 1632–1637.

    Google Scholar 

  115. Shaw LJ, Miller DD, Romeis JC et al. Gender differences in the noninvasive evaluation and management of patients wiht suspected coronary artery disease. Ann Intern Med 1994; 120: 559–566.

    CAS  PubMed  Google Scholar 

  116. Lauer MS, Pashkow FJ, Snader CE et al. Gender and referral for coronary angiography after treadmill thallium testing. Am J Cardiol 1996; 78: 278–283.

    CAS  PubMed  Google Scholar 

  117. Tavel ME, Enas NH, Woods JR. Sensitivity and specificity of tests: can the “silent majority” speak?. Am J Cardiol 1987; 60: 1167–1169.

    CAS  PubMed  Google Scholar 

  118. Garver PR, Wasnich RD, Shibuya AM et al. Apearance of breast attenuation artifacts with thallium myocardial SPET imaging. Clin Nucl Med 1985; 10: 694–696.

    CAS  PubMed  Google Scholar 

  119. Gordon DG, Pfisterer M, Williams R, Walaski S, Ashbum W. The effect of diaphragmatic attenuation on TI-201 images. Clin Nucl Med; 1979: 150–151.

    Google Scholar 

  120. De Puey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989; 30: 441–449.

    Google Scholar 

  121. Eisner R, Churchwell A, Noever T et al. Quantitative analysis of the tomographic thallium-201 myocardial bulleye display: critical role of correcting for patient motion. J Nucl Med 1988; 29: 91–97.

    CAS  PubMed  Google Scholar 

  122. Friedman J, Van Train K, Maddahi J et al. “Upward creep” of the heart: A frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989; 30: 1718–1722.

    CAS  PubMed  Google Scholar 

  123. Geckle WJ, Frank TL, Links JM et al. Correction for patients and organ movement in SPECT: aplication to exercise thallium-201 cardiac imaging. J Nucl Med 1986; 27: 889 (abstr).

    Google Scholar 

  124. Madsen MT, Park CH. Enhancement of SPECT images by Fourier filtering the projection image set. J Nucl Med 1985; 26: 395–402.

    CAS  PubMed  Google Scholar 

  125. Wagoner LE, Movahed A, Reeves WC. Myocardial imaging artefacts caused by mitral valve annulus calcification. J Nucl Med 1991; 16: 94–97.

    CAS  Google Scholar 

  126. Helmer S, Abghari R, Stone M et al. Detection of benign cardiac fibroma on thallium-201 imaging in an adult. Clin Nucl Med 1987; 12: 365–367.

    CAS  PubMed  Google Scholar 

  127. Lebtahi NE, Stauffer JC, Delaloye B. Left bundle branch blook and coronary artery disease: Accuracy of dipiridamole thallium-201 single-photon emission computed tomography in patients with exercise anteroseptal perfusion defects. J Nucl Cardiol 1997; 4: 266–273.

    CAS  PubMed  Google Scholar 

  128. Shih Wj, Berk MR, Mills BJ et al. Reversible thallium-201 perfusion defects of the septal and inferoapical segments in a patient with imcomplete right bundle branch block and normal coronary angiogram. J Nucl Med 1992; 33: 1556–1557.

    Google Scholar 

  129. Mahrotra PP, Weaver YJ, Higginbotham EA. Myocardial perfusion defect on thallium-201 imaging in patients with chronic obstrutive pulmonary disease. J Am Coll Cardiol 1983; 2: 233–239.

    Google Scholar 

  130. Tamal J, Nagata S, Nishimura T. Hemodynamic and prognostic value of thallium-201 myocardial imaging in patients with dilated cardiomyopathy. Int J Cardiol 1989; 24: 219–224.

    Google Scholar 

  131. Mai H, Yamazaki J, Nakano H et al. A case of cardiac amyloidosis showing the ischemic change by exercise T1–201 myocardial scintigraphy. Jpn J Nucl Med 1990; 27: 1157–1162.

    Google Scholar 

  132. Nishimura T, Uehara T, Kozuca T et al. A perfusion defect in the case of a sarcoid heart by thallium-201 myocardial perfusion imaging. Jpn J Clin Radiol 1981; 26: 509–512.

    CAS  Google Scholar 

  133. Candell-Riera J, Bardají A, Sagrista J et al. Aneurisma ventricular en la sarcoidosis. Su detección mediante la ventriculografia isotópica. Rev Esp Cardiol 1986; 39: 151–153.

    CAS  PubMed  Google Scholar 

  134. Martin-Neto JA, Marzullo P, Marcassa C et al. Myocardial perfusion abnormalities in chronic Chagas disease as detected by thallium-201 scintigraphy. Am J Cardiol 1992; 69: 780–784.

    Google Scholar 

  135. Zeiher AM, Krause T, Schächinger V et al. Impaired endothelium-dependent vasodilation of coronary resistence vessels is associated with exercise-induced myocardial ischemia. Circulation 1995; 91: 23452352.

    Google Scholar 

  136. O’Gara PJ, Bonow RO, Maron BJ et al. myocardial perfusion abnormalities in patients with hypertrophie cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation 1987; 76: 1214–1223.

    PubMed  Google Scholar 

  137. Camici P, Chiriatti G, Lorenzoni K. Coronary vasodilation is impaired in both hypertrophic and non-hypertrophie myocardium of patients with hypertrophie cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1991; 17: 879–886.

    CAS  PubMed  Google Scholar 

  138. Iskandrian AS, Verani MS (1996) Exercise perfusion imaging in coronary artery disease: Physiology and diagnosis, in Iskandrian AS, Verani MS (eds.), Nuclear cardiac imaging: principles and applications, FA Davis Company, Philadelphia, pp. 73–143.

    Google Scholar 

  139. Gallik DM, Mammaharian JJ, Verani MS. Therapeutic significance of exercise induced ST segment elevation in patients without previous myocardial infartion. Am J Cardiol 1993; 72: 1–7.

    CAS  PubMed  Google Scholar 

  140. Iskandrian AS, Nallamothu N, Heo J. Nonatherosclerotic causes of myocardial ischemia. J Nucl Cardiol 1996; 3: 428–435.

    CAS  PubMed  Google Scholar 

  141. Gutgesell HP, Pinsky WW, DePuey EG. Thallium-201 myocardial perfusion imaging in infants and children: Value in distinguishing anomalous left coronary artery from congestive cardiomyopathy. Circulation 1980; 61: 659–664.

    Google Scholar 

  142. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn 1990; 21: 28–40.

    CAS  PubMed  Google Scholar 

  143. Almahmeed WA, Haykowski M, Boone J et al. Spontaneous coronary artery dissection in young women. Cathet Cardiovasc Diagn 1996; 37: 201–205.

    CAS  PubMed  Google Scholar 

  144. Vavuranakis M, Bush CA, Boudoulas H. Coronary artery fistulas in adults: incidence, angiographie characteristics, natural history. Cathet Cardiovasc Diagn 1995; 35: 116–120.

    CAS  PubMed  Google Scholar 

  145. Gascueña-Rubia R, Hernández-Hernández F, Tascón-Pérez JC, Albarrán-González-Trevilla A, Lázaro-Salvador M, Hernández-Simón P. Isquemia miocárdica demostrada secundaria a fistulas coronarias múltiples con drenaje en el ventrículo izquierdo. Rev Esp Cardiol 2000; 53: 748–751.

    PubMed  Google Scholar 

  146. Fuster V, Badimon L, Badimon JJ et al. The pathogenesis of coronary artery disease and the acute coronary syndrome. N Engl J Med 1992; 326: 242–250.

    CAS  PubMed  Google Scholar 

  147. Candell Riera J, Armadans L, Simeón CP et al. Comprehensive noninvasive assessment of cardiac involvement in limited systemic sclerosis. Arthritis Rheum 1996; 39: 1138–1145.

    CAS  PubMed  Google Scholar 

  148. Zimring H, Fitzgerald RL, Engler RL et al. Intracoronary vs intravenous effects of cocaine on coronary flow and ventricular funtion. Circulation 1994; 89: 1819–1828.

    CAS  PubMed  Google Scholar 

  149. Hirzel HO, Senn M, Nuesch K et al. Thallium-201 scintigraphy in complete left bundle branch block. Am J Cardiol 1984; 53: 764–769.

    CAS  PubMed  Google Scholar 

  150. Braat SH, Brugada P, Bar FW et al. Thallium-201 exercise scintigraphy and left bundle branch block. Am J Cardiol 1985; 55: 224–226

    CAS  PubMed  Google Scholar 

  151. Rothbart RM, Beller GA, Watson DD et al. Diagnostic accuracy and prognostic significance of quantitative thallium-201 scintigraphy in patients with left bundle branch block. Am J Noninvas Cardiol 1987; 1: 197–205.

    Google Scholar 

  152. DePuey EG, Guertler-Krawczynska E, Robbins WL. Thallium-201 SPECT in coronary artery disease patients with left bundle branch block. J Nucl Med 1988; 29: 1479–1485.

    CAS  PubMed  Google Scholar 

  153. Jazmati B, Sadaniantz A, Emaus SP et al. Exercise thallium-201 imaging in complet left bundle branch block and the prevalence of septal perfusion defects. Am J Cardiol 1991; 67: 46–49.

    CAS  PubMed  Google Scholar 

  154. Larcos G, Gibbons RJ, Brown ML et al. Diagnostic accuracy of exercise thallium-201 single-photon emission computed tomography in patients with left bundle branch block. Am J Cardiol 1991; 68: 756–760.

    CAS  PubMed  Google Scholar 

  155. Delonca J, Camenzind E, Meier B et al. Limits of thallium-201 exercise scintigraphy to detect coronary disease in patients with complete and permanent bundle branch block: A review of 134 cases. Am Heart J 1992; 123: 1201–1207.

    CAS  PubMed  Google Scholar 

  156. Marín-Huerta E, Rodríguez-Padial L, Castro-Beiras JM et al. Thallium-201 exercise scintigraphy in patients having complete left bundle branch block with normal coronary arteries. Int J Cardiol 1987; 16: 43–46.

    Google Scholar 

  157. Rockett JF, Wood WC, Moinuddin M, Loveless V, Parrish B. Intravenous dipyridamole thallium-201 SPECT imaging in patients with left bundle branch block. Clin Nucl Med 1990; 15: 401–407.

    CAS  PubMed  Google Scholar 

  158. Bums RI, Galligan R, Wright LM et al. Improved specificity of myocardial thallium-201 single-photon emission computed tomography in patients with left bundle branch block by dipyridamole. Am J Cardiol 1991; 68: 504–508.

    Google Scholar 

  159. O’Keefe JH Jr, Bateman TM, Barnhart CS. Adenosine thallium-201 is superior to exercise thallium-201 for detecting coronary artery disease in patients with left budle branch block. J Am Coll Cardiol 1993; 21: 1332–1338.

    PubMed  Google Scholar 

  160. Vaduganathan P, He ZX, Raghavan C et al. Detection of left anterior descending coronary artery stenosis in patients with left bundle branch block: exercise, adenosine or dobutamine imaging? J Am Coll Cardiol 1996; 28: 543–550.

    CAS  PubMed  Google Scholar 

  161. Matzer L, Kiat H, Friedman JD et al. A new approach to the assessment of tomographic thallium-201 scintigraphy in patients with left bundle branch block. J Am Coll Cardiol 1991; 17: 1309–1317.

    CAS  PubMed  Google Scholar 

  162. Arana R, González JM, Castell J et al. Utilitat de la gammagrafia planar amb tal.li-201 en els malalts amb bloqueig de branca esquerra. Ann Med (Barc) 1993; 79: 138–139.

    Google Scholar 

  163. Oller-Martínez G, Candell-Riera J, Rosselló J et al. SPET miocàrdic de perfusió amb esforç (+dipiridamol) i compostos tecneciats en pacients amb bloqueig de branca esquerra. Revista de la Societat Catalana de Cardiologia 2000; 3: 8. (Abstr.).

    Google Scholar 

  164. Schulman DS, Francis CK, Black FIR et al. Thallium-201 stress imaging in hypertensive patients. Hypertension 1987; 10: 16–21.

    CAS  PubMed  Google Scholar 

  165. DePuey EG, Guertler-Krawczynska E, Perkins JV et al. Alterations in myocardial thallium-201 distribution in patients with chronic systemic hypertension undergoing single-photon emission computed tomography. Am J Cardiol 1988; 62: 234–238.

    CAS  PubMed  Google Scholar 

  166. Prisant LM, von Dohlen TW, Houghton JL et al. A negative thallium (dipyridamole) stress test excludes significant obstructive epicardial coronary artery disease in hypertensive patients. Am J Hypertens 1992; 5: 71–75.

    CAS  PubMed  Google Scholar 

  167. Cecil MP, Pitcher WC, Eisner RL et al. Absence of defects in SPECT thallium-201 myocardial images in patients with systemic hypertension and left ventricular hypertrophy. Am J Cardiol 1994; 74: 43–46.

    CAS  PubMed  Google Scholar 

  168. Candell-Riera J, Castell-Conesa J. Exploraciones radioisotópicas en la cardiopatía hipertensiva, in: Iriarte MM ed. Cardiopatía hipertensiva. Barcelona: Harcourt Brace, 1997: 153–168.

    Google Scholar 

  169. Tubau JF, Szlachcic, Hollenberg M et al. Usefulness of thallium-201 scintigraphy in predicting the development of angina pectoris in hypertensive patients with left ventricular hypertrophy. Am J Cardiol 1989; 64: 45–49.

    CAS  PubMed  Google Scholar 

  170. Melier J, Goldsmith SJ, Rudin A et al. Spectrum of exercise thallium-201 myocardial perfusion imaging in patients with chest pain and normal coronary angiogramas. Am J Cardiol 1979; 43: 717–723.

    Google Scholar 

  171. Candell Riera J, Castell Conesa J, Ortega Alcalde D. Estudios radioisotópicos en los pacientes con dolor torácico y coronarias angiográficamente normales. Rev Lat Cardiol 1990; 11: 59–64.

    Google Scholar 

  172. Legrand V, Hodgson JM, Bates ER et al. Abnormal coronary flow reserve and abnormal radionuclide exercise test results in patients with normal coronary angiograms. J Am Coll Cardiol 1985; 6: 1245–1253.

    CAS  PubMed  Google Scholar 

  173. Marcus ML, White CW. Coronary flow reserve in patients with normal coronary angiograms. J Am Coll Cardiol 1985; 6: 1254–1256.

    CAS  PubMed  Google Scholar 

  174. Houghton JL, Frank MJ, Can AA et al. Relations among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol 1990; 15: 43–51.

    CAS  PubMed  Google Scholar 

  175. Iriarte M, Caso R, Murga N et al. Microvascular angina pectoris in hypertensive patients with left ventricular hypertrophy and diagnostic value of exercise thallium-201 scintigraphy. Am J Cardiol 1995; 75: 335–339.

    CAS  PubMed  Google Scholar 

  176. Iriarte M, Caso R, Murga N et al. Enalapril-induced regression of hypertensive left ventricular hypertrophy, regional ischemia, and microvascular angina. Am J Cardiol 1995; 75: 850–852.

    CAS  PubMed  Google Scholar 

  177. Meller J, Goldsmith SJ, Rudin A et al. Spectrum of exercise thallium myocardial perfusion imaging in patients with chest pain and normal coronary angiograms. Am J Cardiol 1979; 43: 717–723.

    CAS  PubMed  Google Scholar 

  178. Maseri A, Parodi O, Seven S et al. Transient trasluminal reduction of myocardial blood flow, demostrated by thallium-201 scintigraphy, as a cause of variant angina. Circulation 1976; 54: 280–285.

    CAS  PubMed  Google Scholar 

  179. Berger BC, Abramowitz R, Park CH et al. Abnormal thallium-201 scans in patients with chest pain and angiographically normal coronary arteries. Am J Cardiol 1983; 52: 365–370.

    CAS  PubMed  Google Scholar 

  180. Legrand V, Hodgson JM, Bates ER et al. Abnormal coronary flow reserve and abnormal radionuclide exercise test results in patients with normal coronary angiograms. J Am Coll Cardiol 1985; 6: 1245–1253.

    CAS  PubMed  Google Scholar 

  181. Kaul S, Newell JB, Chesler DA et al. Quantitative thallium imaging findings in patients with normal coronary angiographie findings and in clinically normal subjects. Am J Cardiol 1986; 57: 509–512.

    CAS  PubMed  Google Scholar 

  182. Rosano GM, Kaski JC, Arie S et al. Failure to demostrate myocardial ischaemia in patients with angina and normal coronary arteries. Evaluation by continuous sinous pH monotoring and lactate metabolism. Eur Heart J; 1996; 17: 1175–1180.

    CAS  PubMed  Google Scholar 

  183. Rosano GMC, Peters NS, Kaski JC et al. Abnormal uptake and washout of thallium-201 in patients with syndrome X and normal-appearing scans. Am J Cardiol 1995; 75: 400–402.

    CAS  PubMed  Google Scholar 

  184. Kaski JC, Rosano JMC, Collins P et al. Cardiac syndrome X: Clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol 1995; 25: 807–814.

    CAS  PubMed  Google Scholar 

  185. King MA, Tsui BMW, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 1995; 2: 513–524.

    CAS  PubMed  Google Scholar 

  186. King MA, Tsui BMW, Pan TS et al. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 2. Attenuation compensation algorithms. J Nucl Cardiol 1996; 3: 55–63.

    CAS  PubMed  Google Scholar 

  187. Ficaro EP, Fessler JA, Shreve PD et al. Simultaneous transmission/emission myocardial perfusion tomography. Diagnostic accuracy of attenuation-corrected s`h Tc-sestamibi single-photon emission computed tomography. Circulation 1996; 93: 463–473.

    CAS  PubMed  Google Scholar 

  188. Pan TS, King MA, Luo DS et al. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 1997; 4: 42–51.

    CAS  PubMed  Google Scholar 

  189. Prvulovich EM, Lonn AHR, Bomanji JB et al. Effect of attenuation correction on myocardial thallium-201 distribution in patients with a low likelihood of coronary artery disease. Eur J Nucl Med 1997; 24: 266275.

    Google Scholar 

  190. Jiménez-Hoyuela JM, McClellan JR, Alavi A et al. Impacto de la corrección de atenuación en la imágen de perfusión miocárdica con SPECT. Rev Esp Cardiol 1998; 51 (Suppl. 1): 26–32.

    PubMed  Google Scholar 

  191. Boonyaprapa S, Ekmachachai M, Thanachaikun N et al. Measurement of left ventricular ejection fraction from gated technetium-99m sestamibi myocardial images. Eur J Nucl Med 1995; 22: 528–531.

    CAS  PubMed  Google Scholar 

  192. Williams KA, Taillon LA. Reversible ischemia in severe stress technetium 99m-labeled sestamibi perfusion defects assessed from gated single-photon emission computed tomographic polar map Fourier analysis. J Nucl Cardiol 1995; 2: 199–206.

    CAS  PubMed  Google Scholar 

  193. Palmas W, Friedman JD, Diamond GA et al. Incremental value of simultaneous assessment of myocardial function and perfusion with technetium-99m sestamibi for prediction of extent of coronary artery disease. J Am Coll Cardiol 1995; 25: 1024–1031.

    CAS  PubMed  Google Scholar 

  194. Williams KA, Taillon LA. Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images. Comparison with assessment by contrast ventriculography and first-pass radionuclide angiography. J Am Coll Cardiol 1996; 27: 173–181.

    CAS  PubMed  Google Scholar 

  195. Germano G, Erel J, Kiat H et al. Quantitative LVEF and qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med 1997; 38: 749–754.

    CAS  PubMed  Google Scholar 

  196. Maunoury C, Chen CC, Chua KB et al. Quantification of left ventricular function with thallium-201 and technetium-99m.sestamibi myocardial gated SPECT. J Nucl Med 1997; 38: 958–961.

    CAS  PubMed  Google Scholar 

  197. Berman DS, Germano G. Evaluation of ventricular ejection fraction, wall motion, wall thickening, and other parameters with gated myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol 1997; 4: S169–171.

    CAS  PubMed  Google Scholar 

  198. Ruiz-Salmerón R, Ponce de León E, Lopez A et al. Validación del modelo tridimensional de gatedSPECT con sestamibi para el cálculo de la fracción de eyección ventricular izquierda en pacientes con cardiopatía isquémica. Comparación con la ventriculografia de contraste. Rev Esp Cardiol 1999; 52: 67180.

    Google Scholar 

  199. Yoshioka J, Hasegawa S, Yamaguchi H et al. Left ventricular volumes and ejection fraction calculated from quantitative electrocardiographic-gated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 1999; 40: 1693–1698.

    CAS  PubMed  Google Scholar 

  200. Germano G, Berman DS (1999) Clinical gated cardiac SPECT. Futura Publishing Company, Inc. Armonk, NY.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santana-Boado, C., Candell-Riera, J. (2001). Diagnostic Accuracy of SPET. In: Candell-Riera, J., Castell-Conesa, J., Aguadé-Bruix, S. (eds) Myocardium at Risk and Viable Myocardium. Developments in Cardiovascular Medicine, vol 234. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0906-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0906-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3806-5

  • Online ISBN: 978-94-010-0906-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics