Skip to main content

Radionuclides, Instrumentation and Procedures

  • Chapter
Myocardium at Risk and Viable Myocardium

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 234))

  • 63 Accesses

Abstract

The study of myocardial perfusion using radionuclides requires the use of a tracer that has a great avidity for the myocardium, a good uptake and distribution in the myocardium that is proportional to the regional blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lebowitz E, MW Greene, R Fairchild et al. Thallium-201 for medical use I. J Nucl Med 1975; 16: 151–155.

    CAS  PubMed  Google Scholar 

  2. Bradley-Moore PR, Lebowitz E, Green MW et al. Thallium-201 for medical use II: Biologic behavior. J Nucl Med 1975; 16: 156–160.

    CAS  PubMed  Google Scholar 

  3. L’Abbate A, Biagnini A, Michelassi C et al. Myocardial kinetics of thallium and potassium in man. Circulation 1979; 60: 776–785.

    Article  PubMed  Google Scholar 

  4. Candell Riera J, Aguadé Bruix S, Castell Conesa J, Cortadellas Ángel J. Isonitrilos marcados con tecnecio-99m frente al talio-201 en la enfermedad coronaria. Rev Esp Cardiol 1994; 47 (Suppl 4): 101–115.

    Google Scholar 

  5. Strauss HW, Harrison K, Langan JK et al. Thallium-201 for myocardial imaging. Relation of thallium- 201 to regional myocardial perfusion. Circulation 1975; 51: 641–645.

    Article  CAS  PubMed  Google Scholar 

  6. Better GA (1995) Radiopharmaceuticals in nuclear cardiology, in Beller GA (ed.), Clinical Nuclear Cardiology, W.B. Saunders Company, Philadelphia, pp. 37–81.

    Google Scholar 

  7. Picard M, Dupras G, Taillefer R et al. Myocardial perfusion agents: compared biodistribution of 201- thallium, Tc-99m-tertiary-butyl-isonitrile (TBI) and Tc-99m-methoxy-isobutyl-isonitrile (MIBI). J Nucl Med 1987; 28 (Suppl.): 654–655.

    Google Scholar 

  8. Pohost GM, Alpert NM, Ingwall JS et al. Thallium redistribution: Mechanisms and clinical utility. Semin Nucl Med 1980; 10: 70–93.

    Article  CAS  PubMed  Google Scholar 

  9. Beller GA, Watson DD. Physiological of myocardial perfusion imaging with technetium 99m agents. Semin Nucl Med 1991; 21: 173–181.

    Article  CAS  PubMed  Google Scholar 

  10. lskandrian AS, Heo J, Kong B et al. Use of 99mTc isonitrile (RP-30A) in assesing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise 201-TI SPECT imaging. Am J Cardiol 1989; 64: 270–275.

    Article  CAS  PubMed  Google Scholar 

  11. Maddahi J, Rodrigues E, Berman DS, Kiat H. State-of-the-art myocardial perfusion imaging. Cardiol Clin 1994; 12: 199–222.

    CAS  PubMed  Google Scholar 

  12. Jones AG, Agrams MJ, Davison A et al. Biological studies of a new class of technetium complexes: The hexakis (alkylisonitrile) technetium (I) cations. J. Nuel Med Biol 1984; 11: 225–234.

    Article  CAS  Google Scholar 

  13. Wackers FJ, Berman DS, Maddahi J et al. Technetium-99m hexakis 2 methoxyisobutil isonitrile (hexamibi): Human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989; 30: 301–311.

    CAS  PubMed  Google Scholar 

  14. Crane P, Laliberté R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99-sestamibi myocardial retention. Eur J Nucl Med 1993; 20: 20–25.

    Article  CAS  PubMed  Google Scholar 

  15. Berman DS, Kiat H, Germano G et al. (1995) 99mTc-Sestamibi SPECT in cardiac SPECT imaging. De Puey EG, Berman DS, Garcia EV(eds.), Cardiac SPECT Imaging, Raven Press, New York, pp. 121–146.

    Google Scholar 

  16. Taillefer R, Laflamme L, Dupras G, Picard M, Phaneuf DC, Léveillé J. Myocardial perfusion imaging with 99mTc-methoxy-isobutil-isonitrile (MIBI): Comparison of short and long time intervais between rest and stress injections. Eur J Med 1988; 13: 515–522.

    CAS  Google Scholar 

  17. Verzijlbergen JF, Oudheusden van D, Cramer MJ. Quantitative analysis of planar 99mTc-sestamibi myocardial perfusion images. Eur Heart J 1994; 15: 1217–1226.

    CAS  PubMed  Google Scholar 

  18. Higley B, Smith FW, Smith T et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl)phosphino]ethane: Human biodistribution, dosimetry and sefety of a new myocardial perfusion imaging agent. J Nucl Med 1993; 34: 30–38.

    CAS  PubMed  Google Scholar 

  19. Jain D, Wakers FJTh, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99mtetrofosmin: myocardial perfusion imaging agent: implications for one-day imaging protocol. J Nucl Med 1993; 34: 1254–1259.

    CAS  PubMed  Google Scholar 

  20. Sinusas Al, Shi Q, Saltzberg MT et al. Technetium-99m-tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia. J Nucl Med 1994; 35: 664–671.

    CAS  PubMed  Google Scholar 

  21. Zaret BL, Rigo P, Wackers FJTh et al. Myocardial perfusion imaging with 99mTc tetrofosmin. Comparison to 201TI imaging and coronary angiography in a phase III multicenter trial. Circulation 1995; 91: 313–319.

    Article  CAS  PubMed  Google Scholar 

  22. Kelly JD, Foster AM, Higley B et al. Tecnetium-99m-Tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 1993; 34: 222–227.

    CAS  PubMed  Google Scholar 

  23. Nana RK, Nunn AD, Kuczynski BL et al. A neutral technetium-99m complex for myocardial imaging. J Nucl Med 1989; 30: 1830–1837.

    Google Scholar 

  24. Leppo JA, Meerdink DJ. Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ30217), (SQ30014) and thallium. J Nucl Med 1990; 31: 67–74.

    CAS  PubMed  Google Scholar 

  25. Gewirtz H. Differential myocardium washout of technetium-99m-teboroxime: Mechanism and significance. J Nucl Med 1991; 32: 2009–2011.

    CAS  PubMed  Google Scholar 

  26. Rumsey WL, Rosenspire KC, Nunn AD. Myocardial extraction of teboroxime: Effects of teboroxime interaction with blood. J Nucl Med 1992; 33: 94–101.

    CAS  PubMed  Google Scholar 

  27. Henzlova MJ, Machac J. Clinical utility of technetium-99m-teboroxime myocardial washout imaging. J Nucl Med 1994; 35: 575–579.

    CAS  PubMed  Google Scholar 

  28. Johnson LL. Myocardial perfusion imaging with technetium-99m-teboroxime. J Nucl Med 1994; 35: 689–692.

    CAS  PubMed  Google Scholar 

  29. Chua T, Kiat H, Germano G et al. Rapid back-to-back adenosine stress/rest technetium-99m-teboroxime myocardial perfusion SPECT using a triple-detector camera. J Nucl Med 1993; 34: 1485–1493.

    CAS  PubMed  Google Scholar 

  30. Galofré-Mora P (1994) Physicochemical and technical fundamentals. in Candell-Riera J and Ortega-Alcalde D, (eds.), Nuclear Cardiology in everyday practice, Kluwer Academic Publishers, Dordrecht, pp. 1–28.

    Chapter  Google Scholar 

  31. Anger HO (1957) A new instrument for mapping gamma-ray emitters. Biology and medicine quarterly report UCRL-3653. Washington.

    Google Scholar 

  32. Sorenson JA, Phelps ME. (1987) The Anger camera: Performance characteristics, in Sorenson JA and Phelps ME (eds.), Physics in nuclear medicine, Saunders, Philadelphia, pp. 318–345.

    Google Scholar 

  33. Moore SC, Kouris K, Cullum I. Collimator design for single photon emission-computed tomography. Eur J Nucl Med 1992; 19: 138–150.

    Article  CAS  PubMed  Google Scholar 

  34. Kircos LT, Leonard PF, Keyes Jr JW. An optimized collimator for single-photon computed tomography with a scintillation camera. J Nucl Med 1978; 19: 322–323.

    CAS  PubMed  Google Scholar 

  35. Cao Z, Maunoury C, Chen CC, Holder LE. Comparison of continuous step-and-shoot versus step-andshoot acquisition SPECT. J Nucl Med 1996; 37: 2037–2040.

    CAS  PubMed  Google Scholar 

  36. Iskandrian AE, Maddahi J. Nuclear cardiology: new developments and future directions. J Nucl Cardiol 1997; 4: 189–192.

    Article  Google Scholar 

  37. He ZX, Scarlett MD, Mahmarian JJ, Verani MS, Enhanced accuracy of defect detection by myocardial single-photon emission computed tomography with attenuation correction with gadolinium-153 line sources: evaluation with a cardiac phantom. J Nucl Cardiol 1997; 4: 202–210.

    Article  CAS  PubMed  Google Scholar 

  38. Ficaro EP, Fessier JA, Rogers L, Schwaiger M. Comparison of americium-241 and technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 1994; 35: 652–663.

    CAS  PubMed  Google Scholar 

  39. Ficaro EP, Fessier JA, Ackermann RJ et al. Simultaneous transmission-emission thallium-201 cardiac SPECT: effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995; 36: 921–931.

    CAS  PubMed  Google Scholar 

  40. Cerqueira MD, Harp GD, Ritchie JL. Evaluation of myocardial perfusion and function by single photon emission computed tomography. Semin Nucl Med 1989; 17: 200–213.

    Google Scholar 

  41. Mazzanti M, Germano G, Kiat H, Friedman J, Berman DS. Fast technetium-99m labeled sestamibi gated single-photon emission computed tomography for evaluation of myocardial function. J Nucl Cardiol 1996; 3: 143–149.

    Article  CAS  PubMed  Google Scholar 

  42. Nichols K, DePuey EG, Rozanski A. Automation of gated tomographic left ventricular ejection fraction. J Nucl Cardiol 1996; 3: 475–482.

    Article  CAS  PubMed  Google Scholar 

  43. Hambye AS, Dobbeleir A, Derveaux M, Vandevivere J, van den Heuvel P. Determination of systolic thickening index with gated Tc-99m sestamibi SPECT. A new parameter of myocardial viability?. Clin Nucl Med 1997; 22: 172–175.

    Article  CAS  PubMed  Google Scholar 

  44. Fukuchi K, Uehara T, Morozumi T et al. Quantification of systolic count increase in technetium-99mMIBI gated myocardial SPECT. J Nucl Med 1997; 38: 1067–1073.

    CAS  PubMed  Google Scholar 

  45. Williams KA, Lang RM, Reba RC, Taillon LA. Comparison of technetium-99m sestamibi-gated tomographic perfusion imaging with echocardiography and electrocardiography for determination of left ventricular mass. Am J Cardiol 1996; 77: 750–755.

    Article  CAS  PubMed  Google Scholar 

  46. Kouris K, Clarke GA, Jarrit PH et al. Physical performance evaluation of the Toshiva GCA-9300A triple-head system. J Nucl Med 1993; 34: 1778–1789.

    CAS  PubMed  Google Scholar 

  47. Graham LS. Quality control for SPECT systems. Radiographies 1995; 15: 1471–1481.

    CAS  Google Scholar 

  48. NEMA standards publication NU 1–1986. Performance measurements of scintillation cameras. NEMA sales office, Washington D.C..

    Google Scholar 

  49. Puchal R. Control de calidad de la tomogammacámaras. Rev Esp Med Nuclear 1995; 14: 257–260.

    Google Scholar 

  50. Fahey FH, Harkness BA, Keyes Jr JW et al. Sensitivity, resolution and image quality with a multi-head SPECT camera. J Nucl Med 1992; 33: 1859–1863.

    CAS  PubMed  Google Scholar 

  51. Murphy PH. Acceptance testing and quality control of gamma cameras, including SPECT. J Nucl Med 1987; 28: 1221–1227.

    CAS  PubMed  Google Scholar 

  52. Heller SL, Goodwin PN. SPECT instrumentation: performance, lesion detection and recent innovations. Semin Nucl Med 1987; 17: 184–199.

    Article  CAS  PubMed  Google Scholar 

  53. Baron JM, Chouraqui P. Myocardial single-photon emission computed tomographic quality assurance. J Nucl Cardiol 1996; 3: 157–166.

    Article  CAS  PubMed  Google Scholar 

  54. English RI, Brown SE. (1986) Quality control requirements. In English RI, Brown SE (eds.), SPECT, single-photon emission computed tomography: a primer, The Society of Nuclear Medicine, New York, pp. 25–46.

    Google Scholar 

  55. Kuikka JT, Tenhunen-Eskelinen M, Jurvelin J, Kiilianen H. Physical performance of the Siemens MuItiSPECT 3 gamma camera. Nucl Med Commun 1993; 14: 490–497.

    Article  CAS  PubMed  Google Scholar 

  56. Graham LS, Fahey FH, Madsen MT, van Aswegen A, Yester MV. Quantitation of SPECT performance: Report of Task Group 4, Nuclear Medicine Committee. Med Phys 1995; 22: 401–409.

    Article  CAS  PubMed  Google Scholar 

  57. Everaert H, Vanhove C, Franken PR. Gated-SPET myocardial perfusion acquisition within 5 minutes usinf focussing collimators and tree-head gamma camera. Eur J Nuel Med 1998; 25:587–593.

    Article  CAS  Google Scholar 

  58. Hicks R. (1994) Myocardial perfusion scintigraphy techniques using single photon radiotracers. in Nuclear medicine, Murray IPC, Ell PJ, Strauss HW (eds.), Churchil Livingstone, New York, pp. 1083–1098.

    Google Scholar 

  59. O’Connor MK, Bothun ED. Effects of tomographic table attenuation on prone and supine cardiac imaging. J Nucl Med 1995; 36: 1102–1106.

    PubMed  Google Scholar 

  60. Dahlberg ST, Leppo JA. Myocardial kinetics of radiolabeled perfusion agents: Basis for perfusion imaging. J Nucl Cardiol 1994; 35:189–197.

    Article  Google Scholar 

  61. Berman DS, Kiat HS, Van Train KF et al. Myocardial perfusion imaging with technetium-99mSestamibi: Comparative analysis of available imaging protocols. J Nucl Med 1994; 35: 681–688.

    CAS  PubMed  Google Scholar 

  62. Van Train K, Maddahi J, Berman DS et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1990; 31: 1168–1179.

    PubMed  Google Scholar 

  63. Ortega-Alcalde D. (1994) Gated blood-pool radionuclide ventriculography, in Candell-Riera J and Ortega-Alcalde D, (eds.), Nuclear Cardiology in everyday practice. Kluwer Academic Publishers, Dordrecht, pp. 145–157.

    Chapter  Google Scholar 

  64. Mori T, Minamiji K, Kurongane H et al. Rest-reinjected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991; 23: 1718–1724.

    Google Scholar 

  65. Maddahi J, Schelbert H, Brunken R, Di Carli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med 1994; 35: 707–715.

    CAS  PubMed  Google Scholar 

  66. Kiat H, Maddahi J, Roy LT et al. Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographie methods. Am Heart J 1989; 117: 1–11.

    Article  CAS  PubMed  Google Scholar 

  67. Dilsizian V, Rocco TP, Freedman NTM, Leon Mb, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 323: 141–146.

    Article  CAS  PubMed  Google Scholar 

  68. Kiat H, Berman DS, Maddahi J et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456–1463.

    Article  CAS  PubMed  Google Scholar 

  69. Maddahi J, Kiat H, Van Train KF et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in evaluation of coronary artery disease. Am J Cardiol 1990; 66: 55E–62E.

    Article  CAS  PubMed  Google Scholar 

  70. Van Train KF, Areeda J, Garcia EV et al. Quantitative of same day Tc-99m-Sestamibi myocardial SPECT: Multicenter trial validation. J Nucl Med 1992; 33: 876 (Abstr).

    Google Scholar 

  71. Van Train KF, Areeda J, Garcia EV et al. Quantitative same day rest-stress technetium-99m-Sestamibi SPECT: Definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993; 34: 1494–1502.

    PubMed  Google Scholar 

  72. Sridhara B, Sochor H, Rigo P et al. Myocardial single-photon emission computed tomographie imaging with technetium 99m tetrofosmin: Stess-rest imaging with same-day and separate-day rest imaging. J Nucl Cardiol 1994; 1: 138–143.

    Article  CAS  PubMed  Google Scholar 

  73. Montz R, Perez-Castejon MJ, Jurado JA et al. Technetium-99m tetrofosmin rest/stress myocardial SPET with a same-day 2-hour protocol: comparison with coronary angiography. Eur J Nucl Med 1996; 23: 639647.

    Google Scholar 

  74. Van Train KF, García EV, Maddahi J et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994; 35: 609–618.

    PubMed  Google Scholar 

  75. Santana Boado C, García Burillo A, Candell Riera J et al. SPET 99mTc-Tetrofosmin one day protocol in the diagnosis of CAD. J Nucl Med 1997; 41: 227 (Abstr).

    Google Scholar 

  76. Berman DS, Kiat H, Friedman JD et al. Separate acquisition rest thallium-201/stress Tc-99m sestamibi dual isotope myocardial perfusion SPECT: a clinical validation study. J Am Coll Cardiol 1993; 22; 1455–1464.

    Article  CAS  PubMed  Google Scholar 

  77. Heo J, Wolmer I, Kegel J, Iskandrian AS. Sequential dual-isotope SPECT imaging with thallium-201 and technetium-99m-sestamibi. J Nucl Med 1994; 35: 549–553.

    CAS  PubMed  Google Scholar 

  78. Kiat H, Germano G, Friedman JD et al. Comparative feasibility of separate or simultaneous rest thallium- 201/stress technetium-99m sestamibi dual isotope myocardial perfusion SPECT. J Nucl Med 1994; 35: 542–548.

    CAS  PubMed  Google Scholar 

  79. English RJ, Brown SE (1986) Image Reconstruction, in English RI and Brown SE (eds.), SPECT, single-photon emission computed tomography: a primer. The Society of Nuclear Medicine, New York, pp. 9–24.

    Google Scholar 

  80. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 1995; 36: 1489–1513.

    CAS  PubMed  Google Scholar 

  81. Garcia E, Cooke CD, Van Train KF et al. Technical aspects of myocardial SPECT imaging with technetium-99m-sestamibi. Am J Cardiol 1990; 66: 23E–33E.

    Article  CAS  PubMed  Google Scholar 

  82. Gilland DR, Tsui BMW, McCarTney WH, Perry JR, Berg J. Determination of the optimum filter function for SPECT imaging. J Nucl Med 1988; 29: 643–650.

    CAS  PubMed  Google Scholar 

  83. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; NS-25: 638–643.

    Article  Google Scholar 

  84. King MA, Tsui BMW, Pan TS, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 2. Attenuation compensation algorithms. J Nucl Cardiol 1996; 3: 55–63.

    Article  CAS  PubMed  Google Scholar 

  85. Lalush DS, Tsui BM. A fast and stable maximum a posteriori conjugate gradient reconstruction algorithm. Med Phys 1995; 22: 1273–1284.

    Article  CAS  PubMed  Google Scholar 

  86. Walrand SH, van Elmbt LR, Pauwels S. A non-negative fast multiplicative algorithm in 3D scatter-compensated SPET reconstruction. Eur J Nucl Med 1996; 23: 1521–1526.

    Article  CAS  PubMed  Google Scholar 

  87. Knesaurek K, Machac J. Non-uniform attenuation correction in SPET using a modified conjugate gradient reconstruction method. Nucl Med Commun 1997; 18: 431–436.

    Article  CAS  PubMed  Google Scholar 

  88. Ros D, Falcon C, Juvells I, Pavia J. The influence of a relaxation parameter on SPECT iterative reconstruction algorithms. Phys Med Biol 1996; 41: 925–937.

    Article  CAS  PubMed  Google Scholar 

  89. King MA, Tsui BMW, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 1995; 2: 513–524.

    Article  CAS  PubMed  Google Scholar 

  90. Lalush DS, Tsui BM, Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT. J Nucl Med 2000; 41:737–744.

    CAS  PubMed  Google Scholar 

  91. Passed A, Formiconi AR, De Cristofaro MT, Pupi A, Meldolesi U. High-performance computing and networking as tools for accurate emission computed tomography reconstruction. Eur J Nucl Med 1997; 24: 390–397.

    Google Scholar 

  92. Comittee on Advanced Cardiac Imaging and Technology, Council on Clinical Cardiology, American Heart Association; Cardiovascular Imaging Comittee, American College of Cardiology; and Board of Directors, Cardiovascular Council, Society of Nuclear Medicine. Standarization of Cardiac Tomographic Imaging. Circulation 1992; 86: 338–399.

    Article  Google Scholar 

  93. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI. Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med 1994; 35: 1185–1192.

    CAS  PubMed  Google Scholar 

  94. Fukuchi K, Uehara T, Morozumi T et al. Quantification of systolic count increase in technetium-99mMIBI gated myocardial SPECT. J Nucl Med 1997; 38: 1067–1073.

    CAS  PubMed  Google Scholar 

  95. Germano G, Kiat H, Kavanagh PB et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995; 36: 2138–2147.

    CAS  PubMed  Google Scholar 

  96. Germano G, Erel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med 1997; 38: 749–754.

    CAS  PubMed  Google Scholar 

  97. Nichols K, DePuey EG, Rozanski A. Automation of gated tomographic left ventricular ejection fraction. J Nucl Cardiol 1996; 3: 475–482.

    Article  CAS  PubMed  Google Scholar 

  98. DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993; 34: 1871–1876.

    CAS  PubMed  Google Scholar 

  99. Maunoury C, Chen CC, Chua KB, Thompson CJ. Quantification of left ventricular function with thallium-201 and technetium-99m-sestamibi myocardial gated SPECT. J Nucl Med 1997; 38: 958–961.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ortega-Alcalde, D., Aguadé-Bruix, S. (2001). Radionuclides, Instrumentation and Procedures. In: Candell-Riera, J., Castell-Conesa, J., Aguadé-Bruix, S. (eds) Myocardium at Risk and Viable Myocardium. Developments in Cardiovascular Medicine, vol 234. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0906-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0906-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3806-5

  • Online ISBN: 978-94-010-0906-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics