Advertisement

Core, Halo and Strahl Electrons in the Solar Wind

  • Viviane Pierrard
  • Milan Maksimovic
  • Joseph Lemaire
Conference paper

Abstract

Electron velocity distribution functions (VDF) observed in the low speed solar wind flow are generally characterized by ‘core’ and ‘halo’ electrons. In the high speed solar wind, a third population of ‘strahl’ electrons is generally observed. New collisional models based on the solution of the Fokker-Planck equation can be used to determine the importance of the different electron populations as a function of the radial distance. Typical electron velocity distribution functions observed at 1 AU from the Sun are used as boundary conditions for the high speed solar wind and for the low speed solar wind. Taking into account the effects of external forces and Coulomb collisions with a background plasma, suprathermal tails are found to be present in the electron VDF at low altitudes in the corona when they exist at large radial distances.

Keywords

Solar Wind Speed Solar Wind Velocity Distribution Function Coulomb Collision Fast Solar Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D. and Gary, S.R.: 1975, J. Geophys. Res. 80, 4181.ADSCrossRefGoogle Scholar
  2. Hammond, M.C., et al.: 1996, Astron. Astrophys. 316, 350.ADSGoogle Scholar
  3. Hinton, F.L.: 1983, in: A.A. Galeev and R.N. Sudan (eds.), Basic Plasma Physics I and II, North-Holland Publishing Company, Amsterdam.Google Scholar
  4. Hubert, D. and Leblanc, F.: 2001, Astrophys. Space Sci., this volume.Google Scholar
  5. Ko, Y.-K., Fisk, L.A., Gloeckler, G. and Geiss, J.: 1996, Geophys. Res. Lett. 20, 2785.ADSCrossRefGoogle Scholar
  6. Lemaire, J. and Scherer, M.: 1971, Phys. Fluids 14,8, 1683.ADSCrossRefGoogle Scholar
  7. Lie-Svendsen, O., Hansteen, V.H. and Leer, E.: 1997, J. Geophys. Res. 102,A3, 4701.ADSCrossRefGoogle Scholar
  8. Lie-Svendsen, O. and Rees, M.H.: 1996, J. Geophys. Res. 101, 2415.ADSCrossRefGoogle Scholar
  9. Pantellini, F. and Landi, S.: 2001, Astrophys. Space Sci., this volume.Google Scholar
  10. Pierrard, V.: 1997, PhD thesis, UCL, Aeron. Acta A, 401, Physics.Google Scholar
  11. Pierrard, V. and Lemaire, J.: 1998, J. Geophys. Res. 103, 11701.ADSCrossRefGoogle Scholar
  12. Pierrard, V., Maksimovic, M. and Lemaire, J.: 1999, J. Geophys. Res. 104, 17021.ADSCrossRefGoogle Scholar
  13. Pilipp, W.G., Miggenrieder, H., Montgomery, M.D., Mulhauser, K.-H., Rosenbauer, H. and Schwenn, R.: 1987, J. Geophys. Res. 92, 1075.ADSCrossRefGoogle Scholar
  14. Schulz, M. and Eviatar, A.: 1972, Cosmic Electrodynamics 2, 402.ADSGoogle Scholar
  15. Scudder, J.D.: 1992a, Astrophys. J. 398, 299.ADSCrossRefGoogle Scholar
  16. Scudder, J.D.: 1992b, Astrophys. J. 398, 319.ADSCrossRefGoogle Scholar
  17. Scudder, J.D. and Olbert, S.: 1979a, J. Geophys. Res. 84, 2755.ADSCrossRefGoogle Scholar
  18. Scudder, J.D. and Olbert, S.: 1979b, J. Geophys. Res. 84, 6603.ADSCrossRefGoogle Scholar
  19. Spitzer, L.: 1956, Physics of fully ionized gases, Interscience, New York, 105 pp.MATHGoogle Scholar
  20. Treumann, R.A.: 1997, Geophys. Res. Lett. 14, 1727.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Viviane Pierrard
    • 1
  • Milan Maksimovic
    • 2
  • Joseph Lemaire
    • 1
  1. 1.Institut d’Aéronomie Spatiale de BelgiqueBrusselsBelgium
  2. 2.DESPAObservatoire de Paris-MeudonFrance

Personalised recommendations