Advertisement

Some Physical Processes in Dusty Plasmas

  • M. Rosenberg
Conference paper

Abstract

Ionized gases containing fine (µm to sub-µm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth’s ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust.

Keywords

Dusty Plasma Molecular Cloud Charged Dust Dust Acoustic Wave Planetary Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkan, A., Merlino, R.L. and D’Angelo, N.: 1995, Laboratory observation of the dust-acoustic wave mode, Phys. Plasmas 2, 3563–3565.ADSCrossRefGoogle Scholar
  2. Bernhardt, P.A., Ganguli, G., Kelley, M.C. and Swartz, W.E.: 1995, Enhanced radar backscatter from space shuttle exhaust in the ionosphere, J. Geophys. Res. 100, 23811–23818.ADSCrossRefGoogle Scholar
  3. Bouchoule, A.: 1993, Dusty plasmas, Physics World 6, 47–51, Aug. 1993.Google Scholar
  4. Bronshten, V.A.: 1983, Physics of meteoric phenomena, D. Reidel, Dordrecht.CrossRefGoogle Scholar
  5. Bronshten, V.A.: 1991, Electrical and electromagnetic phenomena associated with meteor flight, Sol. System Res. 25, 93–104.ADSGoogle Scholar
  6. Cho, J.Y.N. and Kelley, M.C.: 1993, Polar mesosphere summer echoes: observations and current theories, Rev. Geophys. 31, 243–265.ADSCrossRefGoogle Scholar
  7. Cho, J.Y.N. and Rottger, J.: 1997, An updated review on polar mesosphere summer echoes: Observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res. 102, 2001–2020.ADSCrossRefGoogle Scholar
  8. Chow, V.W., Mendis, D.A. and Rosenberg, M.: 1993, Role of grain size and particle velocity distribution in secondary electron emission in space plasmas, J. Geophys. Res. 98, 19065–19076.ADSCrossRefGoogle Scholar
  9. Chu, J.H. and Lin, I.: 1994, Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas, Phys. Rev. Lett. 72, 4009–4012.ADSCrossRefGoogle Scholar
  10. D’Angelo, N. and Merlino, R.L.: 1996, Current-driven dust-acoustic instability in a collisional plasma, Planet. Space Sci. 44, 1593–1598.ADSCrossRefGoogle Scholar
  11. Fortov, V.E., Nefedov, A.P., Petrov, O.F., Samarian, A.A. and Chernyschev, A.V.: 1996, Particle ordered structures in a strongly coupled classical thermal plasma, Phys. Rev. E 54, R2236–R2239.ADSCrossRefGoogle Scholar
  12. Fortov, V.E., Nefedov, A.P., Torchinsky, V.M., Molotkov, V.I., et al.: 1997, Crystalline structures of strongly coupled dusty plasmas in dc glow discharge strata, Phys. Lett. A 229, 317–322.ADSCrossRefGoogle Scholar
  13. Fortov, V.E., Nefedov, A.P., Vaulina, O.S., Lipaev, A.M., Molotkov, V.I., Samaryan, A.A., et al.: 1998, Dusty plasma induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station, J. Exp. Theor. Phys. 87, 1087–1097.ADSCrossRefGoogle Scholar
  14. Goertz, C.K.: 1989, Dusty plasmas in the solar system, Rev. Geophys. 27, 271–292.ADSCrossRefGoogle Scholar
  15. Havnes, O., Naesheim, L.I., Hartquist, T.W., Morfill, G.E., Melandso, F., et al.: 1996b, Meter-scale variations of the charge carried by mesospheric dust, Planet. Space Sci. 44, 1191–1194.ADSCrossRefGoogle Scholar
  16. Havnes, O., Troim, J., Blix, T., Mortensen, W., et al.: 1996a, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res. 101, 10839–10847.ADSCrossRefGoogle Scholar
  17. Hayashi, Y. and Tachibana, K.: 1994, Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma, Jpn. J. Appl. Phys. 33, L804–L806.ADSCrossRefGoogle Scholar
  18. Hill, J.R. and Mendis, D.A.: 1982, On the dust current of Saturn’s F ring, Geophys. Res. Lett. 9, 1069–1071.ADSCrossRefGoogle Scholar
  19. Horanyi, M.: 1996, Charged dust dynamics in the solar system, Annu. Rev. Astron. Astrophys. 34, 383–418.ADSCrossRefGoogle Scholar
  20. Hunten, D.M., Turco, R.P. and Toon, O.B.: 1980, Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci. 37, 1342–1357.ADSCrossRefGoogle Scholar
  21. Ikezi, H.: 1986, Coulomb solid of small particles in plasmas, Phys. Fluids 29, 1764–1766.ADSCrossRefGoogle Scholar
  22. Kelley, H.C.: 1989, The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Academic Press, San Diego.Google Scholar
  23. Kelley, H.C., Alcala, C. and Cho, J.Y.N.: 1998, Detection of meteor contrail and meteoric dust in the Earth’s upper mesosphere, J. Atmos. Solar-Terr. Phys 60, 359–369.ADSCrossRefGoogle Scholar
  24. Mathews, J.D., Meisel, D.D., Hunter, K.P., Getman, V.S. and Zhou, Q.: 1997, Very high resolution studies of micrometeors using the Arecibo 430 MHz radar, Icarus 126, 157–169.ADSCrossRefGoogle Scholar
  25. McKee, C.F.: 1989, Photoionization regulated star formation and the structure of molecular clouds, Astrophys. J. 345, 782–801.ADSCrossRefGoogle Scholar
  26. Melandso, F., Aslaksen, T.K. and Havnes, O.: 1993, A kinetic model for dust acoustic waves applied to planetary rings, J. Geophys. Res. 98, 13315–13323.ADSCrossRefGoogle Scholar
  27. Melzer, A., Trottenberg, T. and Piel, A.: 1994, Experimental determination of the charge on dust particles forming Coulomb lattices, Phys. Lett. A 191, 301–308.ADSCrossRefGoogle Scholar
  28. Mendis, D.A. and Rosenberg, M.: 1994, Cosmic dusty plasma, Annu. Rev. Astron. Astrophys. 32, 419–463.ADSCrossRefGoogle Scholar
  29. Mendis, D.A., Rosenberg, M. and Chow, V.W.: 1998, Ionization equilibria in dusty plasma environments, in: M. Horanyi, S. Robertson and B. Walch (eds.), Physics of Dusty Plasmas: 7th Workshop, AIP, New York.Google Scholar
  30. Meyer-Vernet, N.: 1982, ‘Flip-flop’ of electric potential of dust grains in space, Astron. Astrophys. 105, 98.ADSMATHGoogle Scholar
  31. Mohideen, U., Rahman, H.U., Smith, M.A., Rosenberg, M. and Mendis, D.A.: 1998, Intergrain coupling in dusty plasma Coulomb crystals, Phys. Rev. Lett. 81, 349–352.ADSCrossRefGoogle Scholar
  32. Mohr, M.R., Matter, D. and Burtscher, H.: 1996, Efficient multiple charging of diesel particles by photoemission, Aerosol. Sci. Technol. 24, 14–20.CrossRefGoogle Scholar
  33. Morfill, G.E. and Thomas, H.: 1996, Plasma crystal, J. Vac. Sci. Technol. A 14, 490–495.ADSCrossRefGoogle Scholar
  34. Morfill, G.E., Thomas, H.M., Konopka, U., Rothermel, H., Zuzic, M., Ivlev, A. and Goree, J.: 1999, Condensed plasmas under microgravity, Phys. Rev. Lett. 83, 1598–1601.ADSCrossRefGoogle Scholar
  35. Nishi, R., Nakano, T. and Umebayashi, T.: 1991, Magnetic flux loss from interstellar clouds with various grain size distributions, Astrophys. J. 368, 181–194.ADSCrossRefGoogle Scholar
  36. Norman, C. and Heyvaerts, J.: 1985, Anomalous magnetic diffusion during star formation, Astron. Astrophys. 147, 247–256.ADSGoogle Scholar
  37. Rao, N.N., Shukla, P.K. and Yu, M.Y.: 1990, Dust-acoustic waves in dusty plasmas, Planet. Space Sci. 38, 543–546.ADSCrossRefGoogle Scholar
  38. Richardson, J.D. and Sittler, E.C.: 1990, A plasma density model for Saturn based on Voyager observations, J. Geophys. Res. 95, 12019–12031.ADSCrossRefGoogle Scholar
  39. Rosenberg, M.: 1993, Ion-and dust-acoustic instabilities in dusty plasmas, Planet. Space Sci. 41, 229–233.ADSCrossRefGoogle Scholar
  40. Rosenberg, M: 1996, Instabilities in dusty plasmas, in: P.K. Shukla, D.A. Mendis and V.W. Chow (eds.), The Physics of Dusty Plasmas, World Scientific, Singapore.Google Scholar
  41. Rosenberg, M.: 1996, Ion-dust streaming instability in processing plasmas, J. Vac. Sci. Technol. A 14, 631–633.ADSCrossRefGoogle Scholar
  42. Rosenberg, M.: 2000, Dusty plasmas: a topical review, J. Phys. IV France 10, Pr5–73.Google Scholar
  43. Rosenberg, M. and Chow, V.W.: 1998, Farley-Buneman instability in a dusty plasma, Planet. Space Sci. 46, 103–108.ADSCrossRefGoogle Scholar
  44. Rosenberg, M. and Mendis, D.A.: 1995, UV-induced Coulomb crystallization in a dusty gas, IEEE Trans. Plasma Sci. 23, 177–179.ADSCrossRefGoogle Scholar
  45. Rosenberg, M., Mendis, D.A. and Chow, V.W.: 1994, Weakly ionized cosmic gas: ionization and characterization, Astrophys. Space Sci. 222, 247–253.ADSCrossRefGoogle Scholar
  46. Rosenberg, M., Mendis, D.A. and Sheehan, D.R: 1996, UV-induced Coulomb crystallization of dust grains in high-pressure gas, IEEE Trans. Plasma Sci. 24, 1422–1430.ADSCrossRefGoogle Scholar
  47. Rosenberg, M. and Shukla, P.K.: 2000, Low frequency Hall current instability in a dusty plasma, J. Geophys. Res. 105, 23135–23139.ADSCrossRefGoogle Scholar
  48. Rosenberg, M., Salimullah, M. and Bharuthram, R.: 1999, Lower hybrid instability driven by charged dust beam, Planet. Space Sci. 47, 1517–1519.ADSCrossRefGoogle Scholar
  49. Rosinski, J. and Snow, R.H.: 1961, Secondary particulate matter from meteor vapors, J. Meteor. 18, 736–745.CrossRefGoogle Scholar
  50. Rundquist, P.A., Photinos, P., Jagannathan, S. and Asher, S.A.: 1989, Dynamical Bragg diffraction from crystalline colloidal arrays, J. Chem. Phys. 91, 4932–4941.ADSCrossRefGoogle Scholar
  51. Selwyn, G.S.: 1993, A phenomenological study of particulates in plasma tools and processes, Jpn. J. Appl. Phys. 32, 3068–3073.ADSCrossRefGoogle Scholar
  52. Sodha, M.S. and Guha, S.: 1971, Physics of colloidal plasmas, in: A. Simon and W.B. Thompson (eds.), Adv. Plasma Phys. 4, Interscience, New York.Google Scholar
  53. Sorasio, G., Mendis, D.A. and Rosenberg, M.: 2000, The role of thermionic emission in meteor physics, poster presented at 8th Workshop on the Physics of Dusty Plasmas, Sante Fe. NM, April 26–28.Google Scholar
  54. Thomas, H.M. and Morhfill, G.E.: 1997, The processes involved in the solid-to-liquid phase transition, Endeavour 21, 148–153.CrossRefGoogle Scholar
  55. Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B. and Mohlmann, D.: 1994, Plasma crystal: Coulomb crystallization in a dusty plasma, Phys. Rev. Lett. 73, 652–655.ADSCrossRefGoogle Scholar
  56. Thompson, C., Barkan, A., D’Angelo, N. and Merlino, R.L.: 1997, Dust acoustic waves in a direct current glow discharge, Phys. Plasmas 4, 2331–2335.ADSCrossRefGoogle Scholar
  57. Whipple, E.C.: 1981, Potentials of surfaces in space, Rep. Prog. Phys. 44, 1197.ADSCrossRefGoogle Scholar
  58. Whipple, E.C., Northrop, T.G. and Mendis, D.A.: 1985, The electrostatics of a dusty plasma, J. Geophys. Res. 90, 7405–7413.ADSCrossRefGoogle Scholar
  59. Winske, D., Gary, S.P., Jones, M.E., Rosenberg, M., Chow, V.W. and Mendis, D.A.: 1995, Ion heating in a dusty plasma due to the dust/ion acoustic instability, Geophys. Res. Lett. 22, 2069–2072.ADSCrossRefGoogle Scholar
  60. Winske, D. and Jones, M.E.: 1994, Particulate dynamics at the plasma-sheath boundary in DC glow discharges, IEEE Trans. Plasma Sci. 22, 454–464.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. Rosenberg
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations