Advertisement

Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission

  • B. Wang
  • K. Adachi
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 91)

Abstract

Greenhouse experiments were conducted under subtropical conditions to understand the mechanism of rice cultivar differences in methane (CH4) emission. Three rice cultivars were studied. Differences in CH4 emission rates among the three rice cultivars became evident in the middle and late growth stages. Rice root exudates per plant measured as total released C were significantly different among rice cultivars. The effect of root exudates on CH4 production in soil slurry differed accordingly. The amount of root exudates was not significantly different among rice cultivars when computed on a dry matter basis, indicating that it is positively correlated to root dry matter production. The root CH4 -oxidizing activity differed among rice cultivars. 1R65598 had a higher oxidative activity than IR72 and Chiyonishiki. Root air space was not significantly different among rice cultivars at the late growth stage, indicating that it is probably not a factor contributing to cultivar differences in CH4 emission. The population level of methanogenic bacteria differed significantly in soil grown to different rice cultivars, but not in roots, at booting stage and ripening stage. Methanotrophic bacteria population differed significantly in roots among rice cultivars at ripening. Rice cultivars with few unproductive tillers, small root system, high root oxidative activity, and high harvest index are ideal for mitigating CH4 emission in rice fields.

Keywords

control measure methane emission methane oxidation rice cultivar root exudation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi K, Oyediran G ; Senboku T (1996) Effect of application of rice straw and cellulose on methane emission and biological nitrogen fixation in a subtropical paddy field. Il Enumeration of populations of methanogenic bacteria by most probable number method and roll tube method. Soil Sci Plant Nun’ 42:713–723CrossRefGoogle Scholar
  2. Alexander M (1982) Most probable number method for microbial populations. In: Page AL, Miller RH, Keeney DR (eds) Method of Soil Analysis. Part 2, Chemical and Microbiological Properties, pp 815–820,.ASA-SSSA, Madison, WisconsinGoogle Scholar
  3. Bachelet D ; Neue HE (1993) Methane emissions from wetland rice areas of Asia. Chemosphere 26:219–237CrossRefGoogle Scholar
  4. Brink RH ir, Dubach P & Lynch DL (1960) Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci 89:157–166CrossRefGoogle Scholar
  5. Byrnes BH, Austin ER & Tays BK (1995) Methane emissions from flooded soils and plants under controlled conditions. Soil Biol Biochem 27:331–339CrossRefGoogle Scholar
  6. Graham DW, Korich DG, LeBlanc RP, Sinclair NA ; Arnold RG (1992) Application of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236Google Scholar
  7. Jensen CR, Luxmoor RG, van Gundy SD ; Stolzy LH (1969) Root airspace measurements by a pycnometer method. Agron J 61:474–475CrossRefGoogle Scholar
  8. Neue HU (1993) Methane emission from rice fields. Bioscience 43:466–475CrossRefGoogle Scholar
  9. Neue HU (1997) Fluxes of methane from rice fields and po-tential for mitigation. Soil Use Manage 13:258–267CrossRefGoogle Scholar
  10. Neue HU, Wassmann R ; Lantin RS (1995) Mitigation options for methane emissions from rice fields. In: Peng S, Ingram KT, Neue HU, Ziska LH (eds) Climate Change and Rice, pp 136–144, Springer-Verlag, BerlinCrossRefGoogle Scholar
  11. Neue HU, Wassmann R, Lantin RS, Alberto MCR ; Aduna JB (1994) Effect of rice cultivars on methane emission. Int. Rice Res News 19:32Google Scholar
  12. Nouchi I, Mariko S ; Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66CrossRefGoogle Scholar
  13. Schütz H. Seiler W ; Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–35CrossRefGoogle Scholar
  14. Takai Y (1970) The mechanism of methane fermentation in flooded paddy soil. Soil Sei Plant Nutr 16:238–244CrossRefGoogle Scholar
  15. Vogels GD, Keltjens JT ; Van der Drift C (1988) Biochemistry of methane production. In: Zehuder AJB (ed) Biology of Anaerobic Microorganisms, pp 707–770, John Wiley ; Sons, New YorkGoogle Scholar
  16. Wang B, Neue HU & Samonte HP (1997a) Effect of cultivar difference (`IR72’, 1R65598’ and `DulaR-1) on methane emission. Agrie Ecosyst Environ 62:31–40CrossRefGoogle Scholar
  17. Wang B, Neue HU ; Samonte HP (1997b) Role of rice in mediating methane emission. Plant Soil 189: 107–115CrossRefGoogle Scholar
  18. Wang B, Neue HU, ; Samonte HP (1997e) Effect of rice plant on seasonal methane emission pattern. Acta Agron Sin 23:170–179Google Scholar
  19. Wang B, Xu Y, Wang Z, Li Z, Guo Y, Shao K ; Chen Z (1999) Methane emissions from ricefields as affected by organic amendment, water regime, crop establishment, and rice cultivar. Environ Monitor Assess 57:213–228Google Scholar
  20. Watanabe I, Hashimoto T ; Shimoyama A (1997) Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants. Biol Fertil Soils 24: 261–265CrossRefGoogle Scholar
  21. Yagi K, Tsuruta H ; Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycling Agroecosyst 49:213–220CrossRefGoogle Scholar
  22. Yoshida S, Forno DA, Cock JH ; Gomez KA (1976) Laboratory manual for physiological studies of rice, (3’ded), International Rice Research IInstitute, Manila, PhilippinesGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • B. Wang
    • 1
    • 2
  • K. Adachi
    • 2
  1. 1.Institute of Crop Breeding and CultivationBeijingChina
  2. 2.Japan International Research Center for Agricultural SciencesOkinawa Subtropical StationIshigaki, OkinawaJapan

Personalised recommendations