Skip to main content

Modeling methane emissions from rice fields: variability, uncertainty, and sensitivity analysis of processes involved

  • Chapter
Methane Emissions from Major Rice Ecosystems in Asia

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 91))

Abstract

Estimates of global methane (CH4) emissions, to which rice cropping systems contribute significantly, are uncertain. The variability and uncertainty of variables governing emission rates and the sensitivity of emissions to these variables determine the accuracy of CH4 emission estimates. A good tool for quantification of sensitivities is a process-based model. This paper describes a model that has been validated previously by experimental data. Variability and uncertainty in processes and variables underlying CH4 emissions are reviewed and the sensitivities of modeled CH4 emission estimates for process variables are tested. The sensitivity analysis is carried out for two sites in the Philippines at which CH4 emissions have been measured for several years. The sensitivities of the model are compared with measured sensitivities, both as a function of input parameters. The model sensitivity analysis shows that the system is not sensitive to mechanisms of CH4 , production or the pathway of gas transport through the plant. Methane emissions are very sensitive, however, to the description of substrate supply (both from the soil and from organic fertilizers). Unfortunately, this description also represents a main uncertainty. Uncertainty in CH4 emission estimates will thus remain large as long as this process is not well quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtnich C, Schuhmann A, Wind T & Conrad R 1995a Role of interspecies H, transfer to sulfate and ferric iron-reducing bacteria in anoxic paddy soil. FEMS Microbiol Ecol 16: 61–70

    Article  CAS  Google Scholar 

  • Achtnich C. Bak F & Conrad R 1995b Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers and methanogens in anoxic paddy soil. Biol Fertil Soils 19: 65–72

    Article  Google Scholar 

  • Ahmad AR & Nye PH (1990) Coupled diffusion and oxidation of ferrous iron in soils. I. Kinetics of oxygenation of ferrous iron in soil suspension. J. Soil Sei 41: 395–409

    Article  CAS  Google Scholar 

  • Arah JRM & Stephen KD (1998) A model of the processes leading to CH4 emission from peatland. Atmos Environ 32: 3257–3264

    Article  CAS  Google Scholar 

  • Balderston WL & Payne WI (1976) Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol 32: 264–269

    CAS  Google Scholar 

  • Banker BC, Kludze HK, Alford DP, Delaune RD & Lindau CW (1995) Methane sources and sinks in paddy rice soils: relationship to emissions. Agrie Ecosyst Environ 53: 247–251

    Google Scholar 

  • Bedford BL & Bouldin DR (1994) Response to the paper ‘on the difficulties of measuring oxygen release by root systems of wetland plants. J Ecol 82: 185–186

    Article  Google Scholar 

  • Bender M & Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air and or high CH4 mixing ratios. FEMS Microbiol Ecol 101: 261–270

    CAS  Google Scholar 

  • Beyrouty CA, Wells BR, Norman RJ, Marvel JN & Pillow JA (I990) Root growth dynamics of a rice cultivar grown at two locations. Agron J 80: 1001–1004

    Article  Google Scholar 

  • Boudreau BP (1996) A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Computers Geosci 22: 479–496

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H & Rennenberg H (1997) Impact of gas transport through rice cultivars on CH4 emission from rice paddy fields. Plant Cell Environ 20: 1175–1183

    Article  CAS  Google Scholar 

  • Byrnes BH, Austin ER & Tays BK (1995) CH4 emissions from flooded rice soils and plants under controlled conditions. Soil Biol Biochcm 27: 331–339

    Google Scholar 

  • Cabrera ML (1993) Modeling the flush of nitrogen mineralization caused by drying and rewetting soils. Soil Sei Soc Am J 57: 63–66

    Article  Google Scholar 

  • Cao M, Dent JB & Heal OW (1995) Modeling CH4 emissions from rice paddies. Global Biogeochem Cycles 9: 183–195

    Article  CAS  Google Scholar 

  • van Cappellen P & Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296: 197–213

    Article  CAS  Google Scholar 

  • Chin K-J & Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18: 85–102

    Article  CAS  Google Scholar 

  • Conrad R & Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12: 28–32

    Article  CAS  Google Scholar 

  • Corton TM, Bajita JB, Asis Jr CA & Pamplona RR (1995) CH4 emission from an irrigated Philippine paddy field subjected to several fertilizer treatments. Phillip J Crop Sci 20: 39–55

    Google Scholar 

  • Denier van der Gun HAC & Neue H-U (1995a) Influence of organic matter incorporation on the CH4 emission from a wetland rice field. Global Biogeochem. Cycles 9: 1122

    Google Scholar 

  • Denier van der Gun HAC & Neue H-U (1995b) Methane emission from a wetland rice field as affected by salinity. Plant Soil 170: 307–313

    Article  Google Scholar 

  • Denier van der Gon HAC & Neue H-U (1996) Oxidation of CH4 in the rhizosphere of rice plants. Biol Fertil Soils 22: 359–366

    Article  Google Scholar 

  • Denier van der Gon HAC, van Breemen N, Neue H-U, Lantin RS, Aduna JB, Alberto MCR & Wassmann R (1996) Release of entrapped CH4 from wetland rice fields upon soil drying. Global Biogeochem Cycles 10: 1–7

    Article  Google Scholar 

  • Drenth H, ten Berge HFM & Meijhoom FW (1991) Effects of growth medium on porosity and branching of rice roots (Oryza sativo L.). In: Penning de Vries FWT, van Laar HH & Kropff MT (eds) Simulation and Systems Analysis for Rice Production (SARP). Wageningen(NL): PUDOC. p 162–175

    Google Scholar 

  • Flessa H & Fisher WR (1992) Plant-induced changes in the redox potentials of rice rhizospheres. Plant Soil 143: 5560

    Article  Google Scholar 

  • Frenzel P & Bosse U (1996) Methyl fluoride, an inhibitor of CH4 oxidation and CH4 production. FEMS Microbiol Ecol 21: 25–36

    Article  CAS  Google Scholar 

  • Frenzel P, Rothfuss F & Conrad R (1992) Oxygen profiles and CH4 turnover in a flooded rice microcosm. Biol Fertil Soils 14: 84–89

    Article  CAS  Google Scholar 

  • Gilbert B & Frenzel P(1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater CH4 concentration and CH4 emissions. Biol Fertil Soils 20: 93–100

    Article  CAS  Google Scholar 

  • Gilbert B, Assmus B, Hartmann A & Frenzel P (1998) In situ localization of two methanotrophic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol 25: 117–128

    Google Scholar 

  • Gujer W & Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15: 127–167

    CAS  Google Scholar 

  • Hassink J & Whitmore AP (1997) A model of the physical protection of organic matter in soils. Soil Sci Soc Am J 61: 131–139

    Article  CAS  Google Scholar 

  • Hosono T & Nouchi I (1997) The dependence of CH4 transport in rice plants on the root zone temperature. Plant Soil 191: 233–240

    Article  CAS  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A & Marskell K (1996) Climate change 1995. The science of climate change, I’ ed. Cambridge_ University Press

    Google Scholar 

  • Huang Y, Sass RL & Fisher Jr FM (1997) Methane emission from Texas rice paddy soils. I. Quantitative multi-year dependence of CH4 emission on soil, cultivar and grain yield. Global Change Biol 3: 479–489

    Article  Google Scholar 

  • Huang Y. Sass RL & Fisher Jr FM (1998) A semi-empirical model of CH4 emission from flooded rice paddy soils. Global Change Biol 4: 247–268

    Article  Google Scholar 

  • Husin YA, Murdiyarso D, Khalil MAK, Rasmussen RA. Shearer MJ, Sabiham S, SunarA & Adijuwana H (1995) CH4 flux from indonesian wetland rice: the effects of water management and rice variety. Chemosphere 31: 3153–3180

    Google Scholar 

  • Inubushi K & Wada H (1987) Easily decomposable organic matter in paddy soils: VII. Effect of various pretreatments on N mineralization in submerged soils. Soil Sci Plant Nutr 33: 567–576

    Article  Google Scholar 

  • Inubushi K, Wada H & Takai Y (1984) Easily decomposable organic matter in paddy soil. IV. Relationship between reduction process and organic matter decomposition. Soil Sei Plant Nutr 30: 189–198

    Article  CAS  Google Scholar 

  • Jakobsen P, Patrick Jr WH & Williams BG (1981) Sulfide and CH4 formation in soils and sediments. Soil Sei 132: 279–287

    Article  CAS  Google Scholar 

  • Kang S-Y, Morita S & Yamazaki K (1994) Root growth and distribution in some Japonica-Indica hybrid and Japonica type rice cultivars under field conditions. Jpn J Crop Sei 63: 118–124

    Article  Google Scholar 

  • Kimura M & Minami K (1995) Dynamics of CH4 in rice fields. In: Peng S et al. (eds) Climate change and rice. Berlin: Springer Vcrlag, p 33–45

    Google Scholar 

  • Kimura M, Miura Y, Watanabe A, Katoh K & Haraguchi H (1991) Methane emission from paddy field, part I. Effect of fertilization, growth stage and midsummer drainage: Pot experiment. Environ Sei 4: 265–271

    Google Scholar 

  • Kimura M, Minoda T & Murase J (1993) Water-soluble organic materials in paddy soil ecosystem, part 2. Effects of temperature on contents of total organic materials, organic acids, and CH4 in leachate from submerged paddy soils amended with rice straw. Soil Sei Plant Nutr 39: 713–724

    Article  CAS  Google Scholar 

  • King GM (1996) In situ analyses of CH4 oxidation associated with the roots and rhizomes of a bur reed, Sparganium curycarpum, in a Maine wetland. Appl Environ Microbiol 62: 4548–4555

    CAS  Google Scholar 

  • King GM, Roslev P & Skovgaard H (1990) Distribution and rate of CH4 oxidation in sediments of the Florida Everglades. Appl Environ Microbiol 56: 2902–291

    CAS  Google Scholar 

  • Kirchhof G & So HB (1996) The effect of puddling intensity and compaction on soil properties, rice and mungbean growth: a mini-ricebed study. In: Kirchhof G & So HB (eds) Management of clay soils for rainfed lowland rice-based cropping systems. Canberra: ACIAR, p 51–70

    Google Scholar 

  • Kirk GJD, Begs CBM & Solivas JL (1993) The chemistry of the lowland rice rhizosphere. Plant Soil 155/156: 83–86

    Article  Google Scholar 

  • Klüher HD & Conrad R (1998) Effects of nitrate, nitrite, NO and N,O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol Ecol 25: 301–318

    Google Scholar 

  • Kludze HK, Delaune RD & Patrick Jr WH (1993) Aerenchyma formation and CH4 and oxygen exchange in rice. Soil Sci Soc Am J 57: 386–391

    Article  CAS  Google Scholar 

  • Kludze HK, Delaune RD & Patrick Jr WH (1994) A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots. Agron J 86: 483–487

    Article  CAS  Google Scholar 

  • Kludze HK, Neue H-U, Llenaresas D & Lantin RS (1999) Rice root exudation and its impact on CH4 production. Soil Sei Soc Am J (in press

    Google Scholar 

  • Kludze HK & Delaune RD (1995a) Straw application effects on CH4 and oxygen exchange and growth in rice. Soil Sci Soc Am J 59: 824–830

    Article  CAS  Google Scholar 

  • Kludze HK & Delaune RD (1995b) Gaseous exchange and wetland plant response to soil redox intensity and capacity. Soil Sci Soc Am J 59: 939–945

    Article  CAS  Google Scholar 

  • Kristjansson JK, Schönheit P & Thauer RK (1982) Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131: 278–282

    Article  CAS  Google Scholar 

  • Kumaraswany S, Ramakrishan B, Satpathy SN, Rath AK, Misra S, Rao VR & Sethunathan N (1997) Spatial distribution of CH4 -oxidizing activity in a flooded rice soil. Plant Soil 191: 241–248

    Article  Google Scholar 

  • Kumazawa K (1984) Physiological specificity of rice root in relation to oxidizing power and nutrient uptake. In: Tsunoda S and Takahashi N (eds) Biology of rice. Tokyo/Amsterdam: Japan Sci Soc Press/ Elsevier. p 117–131

    Google Scholar 

  • Lee KK, Holst RW, Watanabe I & App A (1981) Gas trans-port through rice. Soil Sci Plant Nutr 27: 151–158

    Article  CAS  Google Scholar 

  • Lelieveld J, Crutzen PJ & Dentener EJ (1998) Changing concentration, lifetime and climate forcing of atmospheric CH„. Tellus 50B: 128–150

    CAS  Google Scholar 

  • Lindau CW & Bollich PK(1993) Methane emissions from Lousiana 1st and ratoon crop rice.Soil Sci 156: 42–48

    Article  CAS  Google Scholar 

  • Lindau CW, Bollich PK & Delaune RD (1995) Effect of rice variety on CH4 emission from Louisiana rice. Agrie Ecosyst Environ 54: 109–114

    Article  Google Scholar 

  • Lord CJ Ill & Church TM (1983) The geochemistry of salt marshes: sedimentary ion diffusion, sulfate reduction and pyritization. Geochim Cosmochim Acta 47: 1381–1391

    Article  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harriss EL, Phillips EJP & Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448

    Article  CAS  Google Scholar 

  • Lovley DR & Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51: 683–689

    CAS  Google Scholar 

  • Lovley DR & Phillips EJP (1987) Competitive mechanisms for inhibition of sulfate reduction and CH4 production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53: 2636–2641

    CAS  Google Scholar 

  • Luther GW 111, Giblin A, Howarth RW & Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marshes and estuarine sediments. Geochim Cosmochim Acta 46: 2665–2669

    Article  CAS  Google Scholar 

  • Mattson MD & Likens GE (1990) Air pressure and CH4 fluxes. Nature 347: 718–719

    Article  Google Scholar 

  • Matthews E, Fung I & Learner G (1991) CH4 emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Global Biogeochem Cycles 5: 3–24

    Article  CAS  Google Scholar 

  • le Mer J, Escoffer S, Chessel C & Roger PA (1996) Microbiological aspects of CH4 emission in a rieefield soil from the Camargue (France): 2. Methanotrophy and related microfauna. Eur J Soil Biol 32: 71–80

    CAS  Google Scholar 

  • Minoda T & Kimura M (1994) Contribution of photosynthesized carbon to the CH4 emitted from paddy fields. Geophys Res Lett 21: 2007–2010

    Article  CAS  Google Scholar 

  • Miura Y, Watanabe A, Murase.T & Kimura M (1992) Methane production and its fate in paddy fields. II. Oxidation of CH4 and its coupled ferric oxide reduction in subsoil. Soil Sci Plant Nutr 38: 673–679.

    Article  CAS  Google Scholar 

  • Murase J & Kimura M (1994) Methane production and its fate in paddy fields VI. Anaerobic oxidation of CH„ in plow layer soil. Soil Sei Plant Nutr 40: 404–514.

    Google Scholar 

  • Murase J & Kimura M (1997) Anaerobic reoxidation of Mn“, Fe”, S° and S’ in submerged paddy soils. Biol Fertil Soils 25: 302–306

    Article  CAS  Google Scholar 

  • Nedwell DB & Watson A (1995) Methane production, oxidation and emission in a U.K. ombrotrophic peat bog: influence of SO, from acid rain. Soil Biol Biochem 27: 893–903

    Article  CAS  Google Scholar 

  • Neue H-U (1997) Fluxes of CH4 from rice fields and poten-tial for mitigation. Soil Use Manage 13: 258–267

    Article  Google Scholar 

  • Neue H-U, Wassmann R, Kludze HK, Wang B & Lantin RS (1997) Factors and processes controlling CH4 emissions from rice fields. Nutr Cycling Agroecosyst 49: 111–117

    Google Scholar 

  • Nouchi I (1990) Mechanisms of CH4 transport through rice plants. In: CH4 and N,0: Global Emissions and Controls from Rice Fields and other Agricultural and Industrial Sources. NIAES. p 87–104

    Google Scholar 

  • Nouchi t, Hosono T, Aoki K & Minami K (1994) Seasonal variation in CH4 flux from rice paddies associated with CH4 concentration in soil water, rice biomass and temperature and its modelling. Plant Soil 161: 195–208

    Article  Google Scholar 

  • Nouchi I & Mariko S (1993) Mechanisms of CH4 transport by rice plants. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, p 336–352

    Chapter  Google Scholar 

  • Nugroho SG, Lumbanraja J. Suprapto H, Sunyoto, Ardjasa WS, Haraguchi H & Kimura M (1994) Effect of intermittent irrigation on CH4 , emission from an Indonesian paddy field. Soil Sci Plant Nutr 40: 609–615

    CAS  Google Scholar 

  • Nugroho SG, Lumbaranaja J, Suprapto H, Sunyoto, Ardjasa WS, Haraguchi H & Kimura M (1996) Three-year measurement of CH4 emission from an Indonesian paddy field. Plant Soil 181: 287–293

    Article  CAS  Google Scholar 

  • Nugroho SG, Sunyoto, Lumbanraja J, Suprapto H, Ardjasa WS & Kimura M (1997) Effect of rice variety on CH4 emission from an Indonesian paddy field. Soil Sci Plant Nutr 43: 799–809.

    Article  CAS  Google Scholar 

  • Ogston AG (1958) The spaces in a uniform random suspen-sion of fibres. Trans Faraday Soc 54: 1754–1757

    Article  Google Scholar 

  • Oude-Elferink SJWH, Visser A, Hulshoff Pol LW & Stams AJM (1994) Sulfate reduction in mcthanogenic bioreactors. FEMS Microbiol Rev 15: 119–136

    CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV & Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51: 11731179

    Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Ads Agron 24: 29–96

    Article  CAS  Google Scholar 

  • Ratering S & Conrad R (1998) Effects of short-term drainage and aeration on the production of CH4 in submerged rice soil. Global Change Bio 4: 397–407

    Article  Google Scholar 

  • Rickard DT (1975) Kinetics and mechanisms of pyrite for-mation at low temperatures. Am J Sei 275: 636–652

    Article  CAS  Google Scholar 

  • Roslev P & King GM (1994) Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl Environ Microbiol 60: 2602–2608

    CAS  Google Scholar 

  • Rothfuss F & Conrad R (1993) Vertical profiles of CH4 concentrations, dissolved substrates and processes involved in CH4 production in a flooded Italian rice field. Biogeochemistry 18: 137–152

    Article  CAS  Google Scholar 

  • Saini RC (1989) Mass loss and nitrogen concentration changes during the decomposition of rice residues under field conditions. Pedobiologica 33: 229–235

    Google Scholar 

  • Sass RL, Fisher FM, Harcombe PA & Turner FT (1990) CH4 production and emission in a Texas rice field. Global Riogeochem Cycles 4: 47–68

    Article  CAS  Google Scholar 

  • Sass RL. Fisher FM, Harcombe PA & Turner FI’ (1991 a) Mitigation of CH4 emissions from rice fields: possible adverse effects of incorporated rice straw. Global Biogeochem Cycles 5: 275–287

    Article  Google Scholar 

  • Sass RL, Fisher FM, Turner FT & Jund MF (1991 b) Methane emission from rice fields as influenced by solar radiation, temperature and straw application. Global Biogeochem Cycles 5: 335–350

    Article  CAS  Google Scholar 

  • Sass RI., Fisher FM, Wang YB, Turner FT & Jund MF (1992) Methane emission from rice fields: the effect of floodwater management. Global Biogeochem Cycles 6: 249–262

    Article  CAS  Google Scholar 

  • Sass RL & Fisher FM (1995) Methane emissions from Texas rice fields: a five-year study. In: Peng S et al., (eds) Climate change and Rice. Berlin: Springer-Verlag. p 46–59

    Chapter  Google Scholar 

  • Satpathy SN, Rath AK, Ramakrishan B, Ran VR, Adhya TK & Sethunathan N (1997) Diurnal variation in CH4 efflux at different growth stages of tropical rice. Plant Soil 195: 267–271

    Article  CAS  Google Scholar 

  • Schlitz H, Holzapfel-Pschorn A, Conrad R. Rennenberg H & Seiler W (1989a) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on CH4 emission rates front an Italian rice paddy. J Geophys Res 94: 16405–16416

    Article  Google Scholar 

  • Schütz H, Seiler W & Conrad R (1989b) Processes involved in formation and emission of CI I, in rice paddies. Biogeochemistry 7: 33–53

    Article  Google Scholar 

  • Segers R (1998) Methane production and CH4 consumption: a review of processes underlying wetland CH4 duxes. Biogeochemistry 41: 23–51

    Article  CAS  Google Scholar 

  • Slaton NA, Beyrouty CA, Wells BR, Norman RJ & Gbur EE (1990) Root growth and distribution of two short-season rice genotypes. Plant Soil 121: 269–278

    Article  Google Scholar 

  • Sorrell BK & Armstrong W (1994) On the difficulties of measuring oxygen release by root systems of wetland plants. J Ecol 82: 177–183.

    Article  Google Scholar 

  • Stroosnijder L (1982) Simulation of the soil water balance. In: Penning de Vries FWT and van Laar HH (eds) Simulation of plant growth and crop production. Wageningen(NL): PUDOC simulation monographs. p 175–193

    Google Scholar 

  • Tanaka S, Yatnuchi A & Kono Y (1995) Root system morphology of four rice cultivars: response of different component roots to nitrogen. Jpn J Crop Sci 64: 148–155

    Article  Google Scholar 

  • Teo YH, Beyrouty CA, Norman RJ & Gbur EE (1995) Nutrient uptake relationship to root characteristics of rice. Plant Soil 17 I: 297–302

    Google Scholar 

  • Tsutsuki K & Ponnamperuma FN (1987) Behavior of anaerobic decomposition products in submerged soils. Effects of organic material amendment, soil properties, and temperature. Soil Sei Plant Nutr 33: 13–33

    Article  CAS  Google Scholar 

  • van Bodegom PM, Wassmann R & Corton TM (2000) A process-based model for CH4 emission predictions from flooded rice paddies. Global Biogeochem Cycles (in press)

    Google Scholar 

  • van Bodegom PM & Stams AJM (1999) Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere 39: 167–182

    Article  CAS  Google Scholar 

  • Walter BP, Heimann M, Shannon RD & White JR (1996) A process-based model to derive CH4 emissions from natural wetlands. Geophys Res Lett 23: 3731–3734

    Article  CAS  Google Scholar 

  • Wang B, Neue H-U & Samonte HP (1997) Effect of cultivar difference (`IR72’, 1R65598’ and `DulaR-1) on CH4 emission. Agrie Ecosyst Environ 62: 31–40

    Article  Google Scholar 

  • Wassmann R, Schütz H, Papen H, Rcnncnberg H, Seiler W, Aiguo D, Shen RX, Wang YS, Shangguan XJ & Wang MX (1993) Quantification of CH4 emissions from Chinese rice fields Zhejiang province as influenced by fertilizer treatment. Biogeochemistry 20: 83–101

    Article  CAS  Google Scholar 

  • Wassmann R, Neue H-U, Lantin RS, Aduna JB, Alberto MCR, Andales Mi, Tan MI, Denier van der Gon HAC, Hoffmann H, Papen H, Rennenberg H & Seiler W (1994) Temporal patterns of CH4 emissions from wetland rice fields treated by different modes of N application. J Geophys Res 99: 16457–16462

    CAS  Google Scholar 

  • Wassmann R, Neue H-U, Alberto MCR, Lantin RS, Bueno C, Llenaresas D, Arab JRM, Papen H, Seiler W & Rennenberg H (1996) Fluxes and pools of CH4 in wetlands rice soils with varying organic inputs. Environ Monit Assess 42: 163–173.

    Article  CAS  Google Scholar 

  • Watanabe A & Kimura M (1995) Methane production and its fate in paddy fields. VIII. Seasonal variations in the amount of CH4 retained in soil. Soil Sci Plant Nutr 41: 225–233.

    Article  CAS  Google Scholar 

  • Watanabe A, Katoh K & Kimura M (1993) Effect of rice straw application on CH4 emission from paddy fields. I. Effect of weathering of rice straw in the field during off-crop season. Soil Sci Plant Nutr 39: 707–712

    Article  CAS  Google Scholar 

  • Watanabe A, Katoh K & Kimura M (1994) Effects of rice straw application on CH4 emission from paddy fields. III. Effect of incorporation site of rice straw on CH4 emission rates and their variation among shoots of a rice plant. Soil Sci Plant Nutr 40: 497–504

    Article  Google Scholar 

  • Watanabe A, Satoh Y & Kimura M 1995a Estimation of the increase in CH4 emission from paddy soils by rice straw application. Plant Soil 173: 225–231

    Article  CAS  Google Scholar 

  • Watanabe A, Kajiwara M, Tashiro T & Kimura M 1995b Influence of rice cultivar on CH4 emission from paddy fields. Plant Soil 176: 51–56

    Article  CAS  Google Scholar 

  • Watanabe 1, Hashimoto T & Shimoyama A (1997) Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants. Biol Peril Soils 24: 261–265

    Article  CAS  Google Scholar 

  • Watanabe A, Yoshida M & Kimura M (1998) Contribution of rice straw carbon to CH4 emission from rice paddies using ‘4C-enriched rice straw. J Geophys Res D 103: 8237–8242

    Article  CAS  Google Scholar 

  • Watson A, Stephen KD, Nedwcll DB & Arah JRM. 1997. Oxidation of CH4 in peat: Kinetics of CH4 and Oz removal, and the role of plant roots. Soil Biol Biochem 29: 1257–1267

    Article  CAS  Google Scholar 

  • Westermann P & Ahring BK (1987) Dynamics of CH4 production, sulfate reduction and denitrification in a permanently waterlogged alder swamp. Appl Environ Microbiol 53: 2554–2559

    CAS  Google Scholar 

  • Winfrey MR & Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogencsis in freshwater sediments. Appl Environ Microbiol 33: 275–281

    CAS  Google Scholar 

  • Witt C, Cassmann KG, Ottow JCG & Biker U (1999) Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biel Fertil Soils (in press)

    Google Scholar 

  • Yagi K & Minami K (1990) Effect of organic matter application on CH4 emission from some Japanese paddy fields. Soil Sci Plant Nutr 36: 599–610

    Article  CAS  Google Scholar 

  • Yagi K, Minami K & Ogawa Y (1998) Effects of water percolation on CH4 emission from rice paddies: alysimeter experiment. Plant Soil 198: 193–200

    Article  CAS  Google Scholar 

  • Yagi K, Tsuruta H, Kanda K & Minami K (1996) Effect of water management on CH4 emission from a Japanese rice paddy field: automated CH., monitoring. Global Biogeochem Cycles 10: 255–267

    Article  CAS  Google Scholar 

  • Yang HS (1996) Modelling organic matter mineralization and exploring options for organic matter management in arable farming in Northern China. PhD thesis, Wageningen (NL): Wageningen Agricultural University

    Google Scholar 

  • Yang S-S & Chang H-L (1998) Effect of environmental conditions on CH4 production and emission from paddy soil. Agrie Ecosyst Environ 69: 69–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reiner Wassmann Rhoda S. Lantin Heinz-Ulrich Neue

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Bodegom, P.M., Leffelaar, P.A., Stams, A.J.M., Wassmann, R. (2000). Modeling methane emissions from rice fields: variability, uncertainty, and sensitivity analysis of processes involved. In: Wassmann, R., Lantin, R.S., Neue, HU. (eds) Methane Emissions from Major Rice Ecosystems in Asia. Developments in Plant and Soil Sciences, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0898-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0898-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3812-6

  • Online ISBN: 978-94-010-0898-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics