Skip to main content

Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I. Model development

  • Chapter
Methane Emissions from Major Rice Ecosystems in Asia

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 91))

Abstract

The development of the MERES (Methane Emissions in Rice EcoSystems) model for simulating methane (CH4) emissions from rice fields is described. The CERES-Rice crop simulation model was used as a basis, employing the existing routines simulating soil organic matter (SOM) decomposition to predict the amount of substrate available for methanogenesis. This was linked to an existing submodel, described elsewhere in this volume (Arah & Kirk, 2000), which calculates steady-state fluxes and concentrations of CH4 and 0, in flooded soils. Extra routines were also incorporated to simulate the influence of the combined pool of alternative electron acceptors in the soil (i.e., NO3 -, Mn4+, Fe3+, SO4 2-) on CH4 production. The rate of substrate supply is calculated in the SOM routines of the CERES-Rice model from (a) the rate of decomposition of soil organic material including that left from the previous crop and any additions of organic matter, (b) root exudates (modified from the original CERES-Rice model using recent laboratory data), and (c) the decomposition of dead roots from the current crop. A fraction of this rate of substrate supply, determined by the concentration of the oxidized form of the alternative electron acceptor pool, is converted to CO2 by bacteria which outcompete the methanogenic bacteria, thereby suppressing CH4 production. Any remaining fraction of the substrate supply rate is assumed to be potentially available for methanogenesis. The CH4 dynamics submodel uses this potential methanogenesis rate, along with a description of the root length distribution in the soil profile supplied by the crop model, to calculate the steady-state concentrations and fluxes of O2 and CH4 . The reduced form of the alternative electron acceptor pool is allowed to reoxidize when soil pores fill with air if the field is drained. The MERES model was able to explain well the seasonal patterns of CH4 emissions in an experiment involving mid-and end-season drainage and additions of organic material at IRRT in the Philippines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anastasi C, Dowding M & Simpson VJ (1992) Future CH4 emission from rice production. J Geophys Res 97:7521–7525

    Article  CAS  Google Scholar 

  • Arah JRM & Kirk GJD (2000) Modelling rice-plant-mediated methane emission. Nutr Cycting Agroccosyst (this issue)

    Google Scholar 

  • Arah JRM & Stephen KD (1998) A model of the processes leading to methane emission from peatland. Atmos Environ 32:3257–3264

    Article  CAS  Google Scholar 

  • Aselmann I & Crutzen DJ (1990) A global inventory of wetland distribution and seasonality, net primary productivity, and estimated methane emissions. In: AF Bouwman (ed) Soils and the Greenhouse. Soil Biol Biochem 25:321–326

    Google Scholar 

  • Bachelet D & Neue H-U (1993) Methane emissions from wetland rice areas of Asia. Chemosphere 26:219–237

    Article  CAS  Google Scholar 

  • Bachelet D, van Sickle J & Gay CA (1993) The impacts of climate change on rice yield: evaluation of the efficacy of different modelling approaches. In: FWT Penning de Vries, PS Teng & K Metselaar (eds), Systems Approaches for Agricultural Development. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 145–174

    Chapter  Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Hariss, RC, Wilson JO & Melack JM (1988) Methane fluxes from the central Amazonian floodplain. J Geophys Res 93:1571–1582

    Article  CAS  Google Scholar 

  • Bouwman AF (1991) Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochcmistry 15:65–88

    CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H & Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183

    Article  CAS  Google Scholar 

  • Cai Z, Yan XY (1996) Simulation of methane oxidation by paddy soils in a closed system. Pedosphere 6(4):313–320

    CAS  Google Scholar 

  • Cao M, Dent JB & Heal OW (1995) Modelling methane emissions from rice paddies. Global Biogcochem Cycles 9:183–195.

    Article  CAS  Google Scholar 

  • Conrad R (1989) Control of methane production in terrestrial ecosystems. In: MO Andreae & DS Schimel (eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, pp 39–58, J. Wiley & Sons, New York

    Google Scholar 

  • Conrad R, Schutz H & Barbble M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. LEMS Microbiol Ecol 45:281–289

    Article  CAS  Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, \Terry ES, Sebacher DI, Madzar L & Sanne W (1988) Methane flux from Minnesota peatlands. Global Biogeochem Cycles 2:371–384

    Article  CAS  Google Scholar 

  • Denier vander, Gon HAC & Neue H-U (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochem Cycles 9:11–22

    Article  Google Scholar 

  • Dunfield P, Knowles R, Dumont R & Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Godwin DC & Jones CA (1991) Nitrogen dynamics in soil-plant systems. In: Hanks J, Ritchie JT (eds) Modeling Soil and Plant Systems, pp 287–322, Agron Soc Am, Madison

    Google Scholar 

  • Huang Y, Sass RL & Fisher FM Jr (1998) A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biol 4(3):247–268

    Article  Google Scholar 

  • IPCC — Intergovernmental Panel on Climate Change (1996) XII. Summary for policymakcrs. In: JT Houghton, LG Meira-FilhO2 BA Chancellor, A Kattenberg & K Maskell (eds) Climate Change 1995: The Scientific Basis of Climate Change. Cambridge University Press, Cambridge, UK, 572 p

    Google Scholar 

  • Kern JS, Gong Z, Zhang G, Zhuo H & Luo G (1997) Spatial analysis of methane emissions from paddy soils in China and the potential for emissions reduction. Nutr Cycling Agroecosyst 49:181–195

    Article  CAS  Google Scholar 

  • Kludze HK, DeI,aune RD & Patrick WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 57:386–391

    Article  CAS  Google Scholar 

  • Knox J, Matthews RB, Wassmann R (2000) Using a crop/ soil simulation model and GIS techniques to assess methane emissions front rice fields in Asia. III. Databases. Nutr Cycling Agroecosyst (this issue)

    Google Scholar 

  • Lassiter RR & Plis YM (1994) Descriptive basis for a model of soils biogeochemistry. In: R.G. Zepp (ed) Climate Biosphere Interaction: Biogenic Emissions and Environmental Effects of Climate Change. pp 223–240, John Wiley & Sons, Inc

    Google Scholar 

  • Lu Y, Wassmann R, Neue H-U & Huang C (1999) Impact of phosphorus on root exudation, aerenchyma formation, and methane emission of rice plants. Biogeochemistry 47:203–218

    Google Scholar 

  • Matthews RB, Wassmann R, Buendia LV & Knox J (2000a) Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. II. Model validation and sensitivity analysis. Nutr Cycling Agroecosyst (this issue)

    Google Scholar 

  • Matthews RB, Wassmann R, Knox JW & Buendia LV (2000b) Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. IV. Upscaling to national levels. Nutr Cycling Agroecosyst (this issue)

    Google Scholar 

  • Neue HU (1985) Organic matter dynamics in wetland soils. In: Wetland Soils: Characterization, Classification and Utilization, pp 109–122, International Rice Research IInstitute, Los Banos, Philippines

    Google Scholar 

  • Neue HU & Roger PA (1993) Rice agriculture: factors controlling emissions. In: MAK Khalil (ed) Atmospheric Methane: Sources, Sinks, and Role in Global Change, pp 254–298, NATO ASI Series. Springer-Verlag. Berlin

    Chapter  Google Scholar 

  • Nouchi I, Hosono T, Aoki K & Minami K (1994) Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling. Plant Soil 161(2):195–208

    Article  CAS  Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66

    Article  CAS  Google Scholar 

  • Patrick Jr WH & Delaune RD (1977) Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. GeoScience Manage 18:131–137

    Google Scholar 

  • Ritchie JT, Singh U, Godwin DC & Bowen WT (1998) Cereal growth, development and yield. In: G Tsuji, G Hoogenboom & P Thornton (eds) Understanding Options for Agricultural Production. Systems Approaches for Sustainable Agricultural Development, pp 79–98, Kluwer Academic Publishers, Dordrecht, The Nether-hinds

    Chapter  Google Scholar 

  • Sass RL & Fisher FM (1995) Methane emissions front Texas rice fields. In: S Peng, KT Ingram, HU Neue & LH Ziska (eds) pp 46–59, Climate Change and Rice, Springer-Verlag, Berlin, Germany

    Chapter  Google Scholar 

  • Sass RL & Fisher FM (1997) Methane emissions from rice paddies: a process study summary. Nutr Cycling Agroecosyst 49:119–127

    Article  CAS  Google Scholar 

  • Sass RL, Fisher FM, Turner FT &Yund MF (1991) Methane emission front rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochem Cycles 5(4):335–350

    Article  CAS  Google Scholar 

  • Schütz H, Seiler W & Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53

    Article  Google Scholar 

  • Seiler W, Holzapfel-Pschom A, Conrad R & Scharffe D (1984) Methane emission from rice paddies. J Atmos Chem 1:241–268

    Article  CAS  Google Scholar 

  • Seligman NG & van Keulen H (1981) PAPRAN: a simulation model of annual pasture production limited by rainfall and nitrogen. In: M. Frissel & J. van Veen (eds), Simulation of Nitrogen Behaviour in Soil-Plant Systems pp 192–221, PUDOC, Wageningen, The Netherlands

    Google Scholar 

  • Shamoot S, McDonald L & Bartholomew WV (1968) Rhizodeposition of organic debris in soil. Soil Sci Soc Am Proc 32:817–820

    Article  CAS  Google Scholar 

  • Shearer MJ & Khalil MAK (1993) Rice agriculture: emissions. In: MAK Khalil (ed), Atmospheric Methane: Sources, Sinks, and Role in Global Change, pp 230–253, NATO ASI Series, Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Taylor JA, Brasseur GP, Zimmerman PR & Cicerone RJ (1991) A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model. J Geophys Chem 96:3013–3044

    Article  CAS  Google Scholar 

  • Tsutsuki K & Ponnamperuma FN (1987) Behaviour of anaerobic decomposition in submerged soils: effects of organic material amendment, soil properties and temperature. Soil Sci Plant Nutr 33:13–33.

    Article  CAS  Google Scholar 

  • Ueckert J, Hurek I, Fendrik I & Nieniann EG (1990) Radial gas diffusion from roots of rice and kallargrass (Leptochloa fusca L. Kunth), and effects of inoculation with Azospirillium brasilense Cd. Plant Soil 112:59–65

    Article  Google Scholar 

  • van Bodegom PM, Leffclaar PA, Status AJM & Wassmann R (2000) Modelling methane emissions from rice paddies: variability, uncertainty and sensitivity analyses of processes involved. Nutr Cycling Agroecosyst (this issue)

    Google Scholar 

  • Walter BR, Heimann M, Shannon RD & White JR (1996) A process-based model to derive methane emissions from natural wetlands. Geophys Res Lett 23(25):3731–3734

    Article  CAS  Google Scholar 

  • Wang B, Neue HU & Samonte HP (1997) Effect of cultivar difference (‘IR72’, ‘IR65598’, and‘DulaR-1) on methane emission. Agrie Ecosyst Environ 62:31–40

    Article  Google Scholar 

  • Wang Z, Kludze, H, Crozier CR & Patrick WH Jr (1995) Soil characteristics affecting methane production and emission in flooded rice, In: S Peng, KT Ingram, HU Neue & LH Ziska (eds) Climate Change and Rice, pp 80–90, Springer Verlag, Berlin, Germany

    Chapter  Google Scholar 

  • Wang ZP, DeLaune RD, Masscheleyn PH & Patrick WH (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Am 357:382–385

    Article  Google Scholar 

  • Wassmann R, Neue HU, Alberto MCR, Lantin RS, Bueno C, Llenaresas D, Arah JRM, Papen H, Seiler W, Renncnberg H (1996) Fluxes and pools of methane in wetland rice soils with varying organic inputs. Environ Monit Assess 42:163–173

    Article  CAS  Google Scholar 

  • Wassmann R, Neue HU, Bueno C, Lantin RS, Alberto MCR, Buendia LV, Bronson K, Papen H & Rennenberg H (1998) Inherent properties of rice soils determining methane production potentials. Plant Soil 203:227–237

    Article  CAS  Google Scholar 

  • Wassmann R, Buendia LV, Lantin RS, Bueno CS, Lubigan LA, Utnali A, Nocon NN, Javellana AM, Neue HU (2000) Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines. Nutr Cycling Agroecosyst (this issue)

    Google Scholar 

  • Watanabe A & Roger PA (1985). Ecology of flooded rice fields. In: Wetland Soils: Characteristics, Classification and Utilization. International Rice Research IInstitute, Manila, Philippines, pp 229–243

    Google Scholar 

  • Witt C, Cassman KG, Ottow JCG & Biker U (1998) Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol Fertil Soils 28:71–80

    Article  CAS  Google Scholar 

  • Yao H, Conrad R, Wassmann R & Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:267–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reiner Wassmann Rhoda S. Lantin Heinz-Ulrich Neue

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matthews, R.B., Wassmann, R., Arah, J. (2000). Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I. Model development. In: Wassmann, R., Lantin, R.S., Neue, HU. (eds) Methane Emissions from Major Rice Ecosystems in Asia. Developments in Plant and Soil Sciences, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0898-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0898-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3812-6

  • Online ISBN: 978-94-010-0898-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics