Skip to main content

Silicon Nanostructures in Si/SiO2 Superlattices for Light Emission Applications: Possibilities and Limits

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

  • 255 Accesses

Abstract

Silicon is by far the dominant material in today’s microelectronics, its low dimensional structure constitutes also one of the most fascinating fields of research in materials science and technology. Quantum size effects, which occur when crystallite sizes go below ≃ 5nm and become comparable to the exciton Bohr radius, are at the origin of material properties, which find interesting applications in new types of devices. Single electron transistors and memories constitute one of such families, based on the well known Coulomb blockade effect. Light emitting devices (LEDs) and displays, based on quantum confinement, constitute another area of primary importance in technological applications. The main reason being the inefficiency of bulk silicon to emit light and the lack of C-MOS compatible efficient light emitters for integrated optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Cullis, L.T. Canham and P.D.J. Calcott, J. AppI.Phys. 82(3) 909 (1997)

    Article  ADS  Google Scholar 

  2. P.M. Fauchet, lEEE Journ.. of selected Topics in Quant. Electr. 4, No 6, 1020 (1998)

    Article  Google Scholar 

  3. D. Kovalev, H. Heckler, G. Polisski and F. Koch, Phys. Stat. Sol. (b) 215, 871 (1999)

    Article  ADS  Google Scholar 

  4. N. Lalic and J. Linnros, in Proceedings of the E-MRS, J. Lumin. 80, 263 (1999)

    Article  Google Scholar 

  5. Q. Zang, S.C. Baylissand R.A. Hull, Appl. Phys. Lett. 66, 1977 (1995)

    Article  ADS  Google Scholar 

  6. F. Bassani, L. Vervoort, I. Mihalcescu, J.C. Vial, F. Araaud d’Avitaya, J. Appl. Phys. 79, 4066 (1996)

    Article  ADS  Google Scholar 

  7. A.G. Nassiopoulou, V. Tsakiri, V. Ioannou-Sougleridis, P. Photopoulos, S. Menard, F. Bassani, F. Arnaud d’ Avitaya, J. Lum. 80, 81 (1999)

    Article  Google Scholar 

  8. P. Normand, D. Tsoukalas, E. Kapetanakis, J.A.Van Den Berg, D.G. Arnour, J. Stoemenos, C. Veu, Electroch. Sol. Stat. Lett. 1(2), 88(1998)

    Article  Google Scholar 

  9. A.G. Nassiopoulou, S. Grigoropoulos, E. Gogolides and D. Papadimitriou, Appl. Phys. Lett. 66, 1114 (1995)

    Article  ADS  Google Scholar 

  10. A.G. Nassiopoulou, S. Grigoropoulos and D. Papadimitriou, Appl. Phys. Lett. 69, 2267 (1996)

    Article  ADS  Google Scholar 

  11. D.J. Lockwood, Z.H. Lu and J.-M. Baribeau, Phys. Rev. Lett. 76(3), 539 (1996)

    Article  ADS  Google Scholar 

  12. V. Ioannou-Sougleridis, V. Tsakiri, A.G. Nassiopoulou, F. Bassani, S. Menard and F. Arnaud d’ Avitaya, Mat. Sci. Eng. B 69-70, 309 (2000)

    Article  Google Scholar 

  13. S.V. Novikov, J. Sinkkonen, O. Kilpela and S.V. Gastev, J. Vac. Sci. Techn. B 15(4), 1471 (1997)

    Article  Google Scholar 

  14. L. Tsybeskov, K.D. Hirschman, S.D. Duttagupta, P.M. Fauchet, M. Zacharias, J.P. Mc Caffrey and D.J. Lockwood, Phys. St. Sol. Vol. (a) 165, 69 (1998) and Appl. Phys. Lett. 72 (1), 43 (1998)

    Article  ADS  Google Scholar 

  15. Y. Kanemitsu and S. Okamoto, Phys. Rev. B 56(24), R15561 (1997)

    Article  ADS  Google Scholar 

  16. P. Photopoulos, A.G. Nassiopoulou, D.N. Kouvatsos and A. Travlos, Appl. Phys. Lett. 76(24), June 2000 (in press)

    Google Scholar 

  17. P. Photopoulos and A.G. Nassiopoulou, Appl. Phys. Lett, (submitted)

    Google Scholar 

  18. P. Photopoulos and A.G. Nassiopoulou, D.N. Kouvatsos, and A. Travlos, Mater. Sci. Eng. B 69-70, 345 (2000)

    Article  Google Scholar 

  19. I. Mihalcescu, J.C. Vial, A. Bsiesy, F. Muller, R. Romenstein, E. Martin, C. Delerue, M. Lannoo and G. Allan, Phys. Rev. B 51, 17605 (1995)

    Article  ADS  Google Scholar 

  20. T. Ouisse and A.G. Nassiopoulou, Europhysics Lett. (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nassiopoulou, A.G., Ouisse, T., Photopoulos, P. (2000). Silicon Nanostructures in Si/SiO2 Superlattices for Light Emission Applications: Possibilities and Limits. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics