Quantum Wires and Quantum Dots for Optoelectronics: Recent Advances with Epitaxial Growth on Nonplanar Substrates

  • E. Kapon
Part of the NATO Science Series book series (NAII, volume 6)


The lateral quantum confinement imposed on electrons and holes in semiconductor quantum wires (QWRs) and quantum dots (QDs) has been predicted to bring about significant advantages for optoelectronic device applications. Early on, the increasingly sharp density of states (DOS) achieved with more degrees of confinement was expected to dramatically enhance optical absorption and emission due to the spectral confinement of the reduced DOS. Furthermore, it was anticipated that the lateral confinement would increase the exciton binding energy beyond what is obtained with two-dimensional (2D) quantum well (QW) structures, giving rise to enhanced linear and nonlinear optical excitonic effects. In addition, the extremely small number of charge carriers residing in short wire segments or small arrays of dots makes these nano-optoelectronic structures suitable for integration with novel electronic devices inherently designed for low power consumption, such as conducting nanowires and single electron transistors.


Quantum Well Quantum Wire Physical Review Letter Apply Physic Letter Transmission Electron Microscope Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wegscheider, W. Pfeiffer, L. N. Dignam, M. M. Pinczuk, A. West, K. W. McCall, S. L. and Hull, R. (1993) Lasing from Excitons in Quantum Wires. Physical Review Letters 71, 4071–4074ADSCrossRefGoogle Scholar
  2. 2.
    Goldstein, L Glas, F Marzin, J. Y. Charasse, M.N. and Le-Roux, G. (1985) Growth by Molecular Beam Epitaxy and Characterization of InAs/GaAs Strained-Layer Superlattices. Applied Physics Letters 47, 1099–1101ADSCrossRefGoogle Scholar
  3. 3.
    Kapon, E. Tamargo, M C. and Hwang, D. M (1987) Molecular Beam Epitaxy of GaAs/AlGaAs Superlattice Heterostructures on Nonplanar Substrates. Applied Physics Letters 50, 347–349ADSCrossRefGoogle Scholar
  4. 4.
    Wegscheider, W. Schedelbeck, G. Abstreiter, G. Rother, M and Bichler, M. (1997) Atomically precise GaAs/AIGaAs Quantum Dots fabricated by Twofold Cleaved Edge Overgrowth. Physical Review Letters 79, 1917–1920ADSCrossRefGoogle Scholar
  5. 5.
    Hartmann, A. Ducommun, Y. Loubies, L. Leifer, K. and Kapon, E. (1998) Structure and Photoluminescence of Single AlGaAs/GaAs Quantum Dots Grown in Inverted Tetrahedral Pyramids. Applied Physics Letters 73, 2322–2324ADSCrossRefGoogle Scholar
  6. 6.
    Biasiol, G. and Kapon, E. (1999) Mechanism of Self-Limiting Epitaxial Growth on Nonplanar Substrates. Journal of Crystal Growth 201/202, 62–66ADSCrossRefGoogle Scholar
  7. 7.
    Xie, Q. Madhukar, A. Chen, P. and Kobayashi, N. P. (1995) Vertically Self-Organized InAs Quantum Box Islands on GaAs(100). Physical Review Letters 75, 2542–2545ADSCrossRefGoogle Scholar
  8. 8.
    Biasiol, G. and Kapon, E. (1998) Mechanisms of Self-Ordering of Quantum Nanostructures Grown on Nonplanar Surfaces. Physical Review Letters 81, 2962–2965ADSCrossRefGoogle Scholar
  9. 9.
    Martinet, E. Gustafsson, A. Biasiol, G. Reinhardt, F. Kapon, E. and Leifer, K. (1997) Carrier Quantum Confinement in Self-Ordered AlGaAs V-Groove Quantum Wells. Physical Review B 56, R7096–R7099ADSCrossRefGoogle Scholar
  10. 10.
    Constantin, C. Martinet, E. Rudra, A. Leifer, K. Lelarge, F. Biasiol G. and Kapon, E. (1999) Organometallic Chemical Vapor Deposition of V-Groove InGaAs/GaAs Quantum Wires Incorporated in Planar Bragg Microcavities. Journal of Crystal Growth 207, 161–173ADSCrossRefGoogle Scholar
  11. 11.
    Ogawa, T. Takagahara, T. (1991) Optical Absorption and Sommerfeld Factors of One-dimensional Semiconductors. Physical Review B 44, 8138–8156ADSCrossRefGoogle Scholar
  12. 12.
    Rossi, F. and Molinari, E. (1996) Coulomb-induced Suppression of Band-Edge Singularities in the Optical Spectra of Realistic Quantum-Wire Structures. Physical Review Letters 76, 3642–3645ADSCrossRefGoogle Scholar
  13. 13.
    Martinet, E. Dupertuis, M.-A. Sirigu, L. Oberli, D. Y. Rudra, A. Leifer, K. and Kapon, E. (2000) Direct Observation of New Transitions in the Absorption Spectra of a V-Groove Quantum Wire Waveguide. Physica Status Solidi (in print)Google Scholar
  14. 14.
    Vouilloz, F. Oberli, D. Y. Dupertuis, M.-A. Gustafsson, A. Reinhardt, F. and Kapon, E. (1997) Polarization Anisotropy and Valence Band Mixing in Semiconductor Quantum Wires. Physical Review Letters 78, 1580–1583; Vouilloz, F. Oberli D. Y., Dupertuis, M.-A, Gustafsson, A. Reinhardt, F. and Kapon, E. (1998) Effect of Lateral Confinement on Valence Band Mixing and Polarization Anisotropy in Quantum Wires. Physical Review B 57, 12378-12387ADSCrossRefGoogle Scholar
  15. 15.
    Martinet, E. Dupertuis, M.-A. Reinhardt, F. Biasiol, G. Kapon, E. Stier, O. Grundmann, M. and Bimberg, D. (2000) Separation of Strain and Quantum Confinement Effects in the Optical Spectra of Quantum Wires. Physical Review B (in print)Google Scholar
  16. 16.
    Dupertuis, M.-A. Martinet, E. Weman, H. and Kapon, E. (1998) Quantum Confined Stark Effect in Quantum Wires: Wavefunction Splitting and Cascading. Europhysics Letters 44, 759–765ADSCrossRefGoogle Scholar
  17. 17.
    Weman, H. Martinet, E. Dupertuis, M.-A. Rudra, A. Leifer, K. and Kapon, E. (1999) Two-Dimensional Quantum-Confined Stark Effect in V-Groove Quantum Wires: Excited State Spectroscopy and Theory. Applied Physics Letters 74, 2334–2336ADSCrossRefGoogle Scholar
  18. 18.
    Constantin, C. Martinet, E. Rudra, A. and Kapon, E. (1999) Observation of Combined Electron and Photon Confinement in Planar Microcavities Incorporating Quantum Wires. Physical Review B 59, R7809–R7812ADSCrossRefGoogle Scholar
  19. 19.
    Gammon, D. Snow, E. S. Shanabrook, B. V. Katzer, D. S. Park, D. (1996) Homogeneous Linewidths in the Optical Spectrum of a Single Gallium Arsenide Quantum Dot. Science 273, 87–90ADSCrossRefGoogle Scholar
  20. 20.
    Hasen, J. Pfeiffer, L. N. Pinczuk, A. Song-He, West, K. W. and Dennis, B. S. (1997) Metamorphosis of a Quantum Wire into Quantum Dots. Nature 390, 54–57ADSCrossRefGoogle Scholar
  21. 21.
    Vouilloz, F. Oberli, D. Y. Dwir, B. Reinhardt, F. and Kapon, E. (1998) Observation of Many-Body Effects in the Excitonic Spectra of Semiconductor Quantum Wires. Solid Slate Communications 108, 945–948ADSCrossRefGoogle Scholar
  22. 22.
    Oberli, D. Y. Dupertuis, M.-A. Reinhardt, F. and Kapon, E. (1999) Effect of Disorder on the Temperature Dependence of Radiative Lifetimes in V-Groove Quantum Wires. Physical Review B 59, 2910–2914ADSCrossRefGoogle Scholar
  23. 23.
    Citrin, D. S. (1992) Radiative Lifetimes of Excitons in Quantum Wells: Localization and Phase-Coherence Effects. Physical Review B 47, 3832–3841ADSCrossRefGoogle Scholar
  24. 24.
    Oberli, D. Y. Vouilloz, F. Dupertuis, M.-A. Fall, C. J. and Kapon, E. (1995) Optical Spectroscopy of Semiconductor Quantum Wires. II Nuovo Cimento 17D, 1641–1650ADSCrossRefGoogle Scholar
  25. 25.
    Citrin, D. S. (1992) Long Intrinsic Radiative Lifetimes of Excitons in Quantum Wires. Physical Review Letters 69, 3393–3396ADSCrossRefGoogle Scholar
  26. 26.
    Bellessa, J. Voliotis, V. Grousson, R. Wang, X. L. Ogura, M. Matsuhata, H. (1998) Quantum-Size Effects on Radiative Lifetimes and Relaxation of Excitons in Semiconductor Nanostructures. Physical Review B 58, 9933–9940ADSCrossRefGoogle Scholar
  27. 27.
    Sugyiama, Y. Sakuma, Y. Muto, S. and Yokoyama, N. (1995) Japanese Journal of Applied Physics 34, 4384–4386ADSCrossRefGoogle Scholar
  28. 28.
    Hartmann, A. Loubies, L. Reinhardt, F. and Kapon, E. (1997) Self-Limiting Growth of Quantum Dot Heterostructures onNonplanar 111 B Substrates. Applied Physics Letters 71, 1314–1316ADSCrossRefGoogle Scholar
  29. 29.
    Hartmann, A. Ducommun, Y. Leifer, K. Kapon, E. (1999) Structure and Optical Properties of Semiconductor Quantum Nanostructures Self-Formed in Inverted Tetrahedral Pyramids. Journal of Physics: Condensed Matter 11, 5901–5915ADSCrossRefGoogle Scholar
  30. 30.
    Hartmann, A. Ducommun, Y. Kapon, E. Hohenester, U. and Molinari, E. (2000) Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multi-Charged Excitons. Physical Review Letters 84, 5648–5651ADSCrossRefGoogle Scholar
  31. 31.
    Weman, H. Martinet, E. Rudra, A. and Kapon, E. (1998) Selective Carrier Injection into V-Groove Quantum Wires. Applied Physics Letters 63, 2959–2961ADSCrossRefGoogle Scholar
  32. 32.
    Kapon, E. Hwang, D. M. and Bhat, R. (1989) Stimulated Emission in Quantum Wire Semiconductor Heterostructures. Physical Review Letters 63, 430–433ADSCrossRefGoogle Scholar
  33. 33.
    Kapon, E. (1993) Quantum Wire Lasers Grown by OMCVD on Nonplanar Substrates. Optoelectronics Devices and Technologies 8, 429–460Google Scholar
  34. 34.
    Ben-Ami, U. Nagar, R. Ben-Ami, N. Scheuer, J. Orenstein, M. Eisenstein, G. Lewis, A. Kapon, E. Reinhardt, F. Us, P. and Gustafsson, A. (1998) Near-Field Scanning Optical Microscopy Studies of V-Grooved Quantum Wire Lasers. Applied Physics Letters 73, 1619–1621ADSCrossRefGoogle Scholar
  35. 35.
    Sirigu, L. et al. (2000) Physical Review B Rapid Communications (in print).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • E. Kapon
    • 1
  1. 1.Department of PhysicsSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations