Skip to main content

Dielectric-Polymer Nanocomposite and Thin Film Photonic Crystals: Towards Three-Dimensional Photonic Crystals with a Bandgap in the Visible Spectrum

  • Chapter
  • 259 Accesses

Part of the book series: NATO Science Series ((NAII,volume 6))

Abstract

The concepts of photonic crystals and photonic bandgap (PBG) were introduced in the in late 80s [1] and in first approximation they are the optical analogous to the semiconductor and the energy gap for electrons. They are based on periodic structures formed of two or more materials, which exhibit a periodicity in real space of the dielectric function. Moreover, the refractive index contrast has to be larger than certain value, depending on the relative fill factor of the respective materials. Thus, diffraction phenomena, such as Bragg difraction, take place. There are four main aspects currently motivating research in photonic crystals: (1) The realisation of a full PBG across the electromagnetic spectrum to act, for example, as highly efficient mirrors, optical limiters and optical switches. (2) The partial realisation of the PBG for waveguiding or for “moulding” the light, which is known as photonic crystal waveguides, as opposed as refractive index waveguiding. (3) The realisation of highly efficient light sources by making use of: (i) the strong coupling in a 3-dimensional (3D) optical cavity formed by the PBG crystal and, (ii) the enhanced spontaneous emission rate of a “defect”, the emission wavelength of which is highly defined spectroscopically and falls within the band-gap of the photonic crystal. (4) The use of the dispersion relations represented by the photonic band structure for ultra-refractive phenomena, super prism, spot focusing, super lens, among others, based on the changes of the group velocity in different parts of the Brillouin zone. This work attempts to address the third issue and to some degree the fourth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, Phys. Rev. Lett, 58 2059 (1987); S. John, Phys. Rev. Lett., 58, 2486 (1987)

    Article  ADS  Google Scholar 

  2. JEGJ Wijnhoven, W. L. Vos, Science, 281, no.5738, 802 (1998); A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, AS.O. Dantas, J. Marti, V.G. Ralchenko, Science, 282, 897 (1998)

    Article  ADS  Google Scholar 

  3. S.G. Romanov, A.V. Fokin, V.I. Alperovich, N.P. Johnson, R.M. De La Rue, Physica Status Solidi 163, 169 (1997)

    ADS  Google Scholar 

  4. Yu. A. Vlasov, K. Literova, I. Pelant, B. Honerlalage, V.N. Astratov, Appl. Phys. Lett. 71, 1616 (1997)

    Article  ADS  Google Scholar 

  5. K. Yoshino, K. Tada, M. Ozaki, A.A. Zakhidov, R.H. Baughman, Jpn.J.Appl.Phys., 36, L714 (1997); K. Yoshino, S.B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A.A. Zakhidov, Appl.Phys.Lett., 73, 3506(1998)

    Article  ADS  Google Scholar 

  6. T. Yamasaki, T. Tsutsui , Appl.Phys. Lett., 72, 1957 (1998)

    Article  ADS  Google Scholar 

  7. E. P. Petrov, V.N. Bogomolov, I.I. Kaiosha, S. V. Gaponenko. Phys.Rev.Lett., 81, 77 (1998)

    Article  ADS  Google Scholar 

  8. S.G. Romanov, A.V. Fokin, V.Y. Butko, C.M. Sotomayor Torres, Physics Solid State, 38, 1825 (1996)

    ADS  Google Scholar 

  9. S.G. Romanov, J.Nonlinear Optical Physics & Materials, 7, 181 (1998)

    Article  ADS  Google Scholar 

  10. S.G. Romanov, A.V. Fokin, R.M. De La Rue, Appl. Phys. Lett. 74 (1999)

    Google Scholar 

  11. V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, Y. A. Kumzerov, V. P. Petranovsky, S. G. Romanov and L. A. Samoilovich, Oystallogr. Rep., 38, 348 (1993)

    ADS  Google Scholar 

  12. Romanov S. G. and Sotomayor Torres, C. M. (2000) 3D Lattices of Nanostructures: The template approach, in H S Nalwa (Ed), Handbook of Nanostructured Materials and Nanotechnology, Volume 4, Academic Press, USA, pp232–323 (1999)

    Google Scholar 

  13. W.L. Vos, R. Sprik, A. von Blaadren, A. Imhof, A. Lagendijk and G.H. Wegdam, Phys.Rev.B, 53, 16231 (1996); R.D. Pradhan, I.I. Tarhan and G.H. Watson, Phys.Rev B, 54, 13721 (1996); V.N. Bogomolov, N.V. Gaponenko, A.V. Prokofiev, A.N. Ponyanina, N.I. Silvanovich, and S.M. Samoilovich, Phys.Rev. E, 55, 7619 (1997); V. Yannopapas, N. Stefanou and A. Modinos, J. Phys.: Cond. Matter, 9, 10261 (1998); C. Lopez, H. Miguez, L. Vázquez, F. Meseguer, R. Mayoral and M. Ocana, Superlat. and Microstrucl,. 22, 399, 1997

    Article  ADS  Google Scholar 

  14. J. Brandrup, E.H. Immergut, Polymer Handbook, 3d ed., New York, 1989, p.VI–461

    Google Scholar 

  15. C. Lopez, L. Vazquez, F. Meseguer, R. Mayoral, M. Ocana, H. Miguez, Superlattices And Microstructures, 22, 399 (1997); H. Miguez, A. Blanco, F. Mersequer, C. Lopez, Phys. Rev. B, 1999, 59, 1563

    Article  ADS  Google Scholar 

  16. D. Cassagne, Annales de Physique, 24, 1 (1998)

    Article  Google Scholar 

  17. K. Busch, S. John, ,Phys. Rev. E, 58, 3896 (1998)

    Article  ADS  Google Scholar 

  18. V. Yannopapas, N. Stefanou, A. Modinos, J. Phys.: Cond. Matter, 9, 10261, 1998

    Article  ADS  Google Scholar 

  19. S.G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Mueller, D. Allard and R. Zentel, Appl. Phys. Lett. 75, 1057 (1999)

    Article  ADS  Google Scholar 

  20. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, Phys. Rev. B, 58, R10096, 1998

    Article  ADS  Google Scholar 

  21. S. John and G. Pang, Phys. Rev. A, 54, 3642 (1996)

    Article  ADS  Google Scholar 

  22. D.S. Wiersma, M.P. van Albada, A. Lagendijk, Nature, 373, 203 (1995)

    Article  ADS  Google Scholar 

  23. N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, E. Sauvain, Nature, 368, 436 (1994); N.M. Lawandy, R.M. Balachandran, ibid, 373, 204 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sotomayor Torres, C.M., Maka, T., Romanov, S.G., Müller, M., Zentel, R. (2000). Dielectric-Polymer Nanocomposite and Thin Film Photonic Crystals: Towards Three-Dimensional Photonic Crystals with a Bandgap in the Visible Spectrum. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics