Skip to main content

Self-Assembly of Nanoblocks and Molecules in Optical Thin-Film Nanostructures

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

  • 259 Accesses

Abstract

The growing interest in developing techniques to prepare ultrathin semiconductor nanoparticle films is motivated by the size-dependent electronic and optical properties of semiconductors, which lead to a range of potential applications in electronic and optoelectronic devices, solar cells, photoelectrodes, photocatalysts, and sensors. The wet chemical synthesis of ultrathin semiconductor films represents, in principle, a simple and inexpensive alternative to more technologically demanding chemical vapor deposition (CVD) and physical techniques [1]. However, the realization of practical devices from wet chemical synthesis requires the development of film growth techniques that give similar or better quality films than vapor-phase methods. In particular, precise control of film thickness, crystallinity, and morphology are significant problems to be overcome in wet chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) Fendler J.H., Meldrum F. (1995) The colloid chemical approach to nanostructured materials, Adv. Mater. 7, 607–632; (b) Alivisatos A.P. (1998) Electrical studies of semiconductor nanocrystal colloids, MRS Bull. 23, 2, 18-23; (c) Mallouk T. E., Kim H.-N., Ollivier P. J, Keller S. W. (1996) Ultrathin films based on layered materials, in G. Alberti and T. Bein (eds.), Comprehensive Supramolecular Chemistry, vol. 7, Elsevier Science, Oxford, UK, pp. 189-218.

    Article  Google Scholar 

  2. Her R.K (1966) Multilayers of colloidal particles, J. Colloid Interface Sci. 21, 569–594.

    Article  Google Scholar 

  3. Decher G. (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science 277, 1232–1237.

    Article  Google Scholar 

  4. Keller S. W., Kim H.-N., Mallouk T. E. (1994) Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: towards molecular “Beaker” epitaxy, J. Am. Chem. Soc, 116, 8817–8818.

    Article  Google Scholar 

  5. Colvin V.L., Golstein A.N., Alivisatos A.P. (1992) Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers, J. Am. Chem. Soc. 114, 5221–5230.

    Article  Google Scholar 

  6. Fendler J. (1996) Self-assembled nanostructured materials, Chem. Mater. 8, 1616–1624.

    Article  Google Scholar 

  7. Ollivier P.J., Kovtyukhova N.I, Keller S.W., Mallouk T.E. (1998) Self-assembled thin films from lamellar metal disulfides and organic polymers, Chem. Commun., 1563–1564.

    Google Scholar 

  8. Fang M., Kim H.-N., Saupe G. B., Miwa T., Fujishima A., and Mallouk T. E. (1999) Layer by Layer Growth and Condensation reactions ofNiobate and Titanoniobate Thin Films, Chem. Mater. 11, 1526–1532.

    Article  Google Scholar 

  9. Kovtyukhova N., Ollivier P.J., Chizhik S., Dubravin A., Buzaneva E., Gorchinskiy A., Marchenko A., Smir-nova N. (1999) Self-assembly of ultrathin composite TiO2/polymcr films, Thin Solid Films 337, 166–170.

    Article  ADS  Google Scholar 

  10. (a) Kovtyukhova N.I., Gorchinskiy A.D., Waraksa C.C. (2000) Self-assembly of nanostructured composite ZnO/polyaniline films, Mater. Sci&Eng. B69-70, 424–430; (b) Kovtyukhova N.I., Gorchinskiy A.D., Buzaneva E. V. Zankovich S. (2000) Nanocomposite ZnO/polymer films: synthesis, morphology, electrical and optical properties, in Advanced Materials, Cambridge Press Publishers, in press.

    Google Scholar 

  11. (a) Kleinfeld E. R., Ferguson G. S. (1994) Stepwise formation of multilayered nanostructural films from macromolecular precursors, Science 265, 370–372; (b) Kleinfeld E. R., Ferguson G. S. (1996) Healing of defects in stepwise formation of polymer/silicate multilayer films, Chem. Mater. 8, 1575-1578; (c) Kotov N.A., Magonov S, Tropsha E. (1998) Layer by Layer self-assembly of alumosilicate-polyelectrolyte com-posites: mechanism of deposition, crack resistance, and perspectives for novel membrane materials, Chem. Mater. 11, 886-895.

    Article  ADS  Google Scholar 

  12. Kovtyukhova N., Ollivier P., Martin B., Mallouk T., Buzaneva E., Gorchinskiy A. (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11,771–778

    Article  Google Scholar 

  13. Schmitt J., Decher G., Dressick W., Brandow S.L., Geer R.E., Shashidhar R., Calvert J.M. (1997) Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure, Adv. Mater. 9, 61–65

    Article  Google Scholar 

  14. (a) Cassagneau T., Fendler J.H., Mallouk T. E., Optical and electrical characterization of ultrathin films self-assembled from 11-aminoundecanoic acid capped TiO2 nanoparticles and polyallylamine hydrochloride, Langmuir, in press; (b) Cassagneau T., Mallouk T. E., Fendler J. H. (1998) Layer-by-layer assembly of Zener diodes from conducting polymers and CdSe nanoparticles, J. Am. Chem. Soc. 120, 7848-7859.

    Google Scholar 

  15. Monkman A.P., Stevens G.C., Bloor D. (1991) X-ray photoelectron spectroscopic investigations of the chain structure and doping mechanisms in polyaniline, J. Phys. D: Appl. Phys. 24, 738–749.

    Article  ADS  Google Scholar 

  16. (a) Nicolau Y.F., Menard J.C. (1988) Solution growth of ZnS, CdS and Znl-xCdxS thin films by the successive ionic-layer adsorption and reaction process: growth mechanism, J. Crystal Growth 92, 128–142; (b) Vogel R., Rohl K., Weller H. (1990)Sensitisation of highly porous,polycrystalline TiO2 electrodes by quantum sized CdS, Chem.Phys.Lett. 174, 241-246.

    Article  ADS  Google Scholar 

  17. (a)Ichinose I., Senzu H., Kunitake T. (1997) A surface sol-gel process of TiO2 and other metal oxide films with molecular precision, Chem.Mater. 9, 1296–1298; (b) Fang M., Kim C. H., Martin B.R., Mallouk T.E. (1999) Surface sol-gel synthesis of ultrathin titanium and tantalum oxide films, J. Nanoparticle Res. 1, 43-49.

    Article  Google Scholar 

  18. (a) Kovtyukhova N.I., Buzaneva E.V., Waraksa C.C., Martin B.R, Mallouk T.E. (2000), Surface sol-gel synthesis of ultrathin semiconductor films, Chem. Mater. 12, 383–389; (b)) Kovtyukhova N.I., Buzaneva E.V., Waraksa C.C., Mallouk T.E. (2000) Ultrathin nanoparticle ZnS and ZnS:Mn films: synthesis, morphology, photophysical properties, Mater. Sci&Eng. B69-70, 411-417.

    Article  Google Scholar 

  19. Suntola T. (1989) Atomic layer epitaxy, Mater. Sci. Rep. 4, 261.

    Article  Google Scholar 

  20. Bell C., Arendt M., Gomez L., Mallouk T.E.(1994) Growth of lamellar Hofmann Clathrate films by sequential ligand exchange Reactions: assembling a coordination solid one layer at a time, J. Am. Chem. Soc. 116, 8374–8375.

    Article  Google Scholar 

  21. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Co, Phys. Electr. Div., Minnesota USA.

    Google Scholar 

  22. Meites L. (1963) Handbook of Analytical Chemistry, McGraw Hill, New York.

    Google Scholar 

  23. (a) Sooklal K., Cullum B. S., Angel S. M., Murphy C. J.(1996) Photophysical properties of ZnS nano-clusters with spatially localized Mn2+, J.Phys.Chem. 100, 4551–4555; (b) Becker W.G., Bard A.J. (1983) Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions, J. Phys.Chem. 87, 4888-4893; (c) Rabani J. (1989) Sandwich colloids of ZnO and ZnS in aqueous solutions, J. Phys.Chem. 93,7707-7713.

    Article  Google Scholar 

  24. (a) Spanhel L., Anderson M.A. (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids, J.Amer.Chem.Soc. 113, 2826–2833; (b) Kamat P.V., Patrick B. (1992) Photophysics and photochemistry of quantized ZnO colloids, J.Phys.Chem. 96, 6829-6834.

    Article  Google Scholar 

  25. Eremenko A., Smirnova N., Samchuk S., Chuiko A. (1992) Investigation of silica surface chemistry by luminescent probes method, Colloids and Surfaces 63, 83–92.

    Article  Google Scholar 

  26. Hotchandani S., Kamat P.V.(1992) Photoelectrochemistry of semiconductor ZnO paniculate films, J.Electrocem. Soc. 139, 1630–1634.

    Article  Google Scholar 

  27. Feldheim D. L., Grabar K. C., Natan M. J., Mallouk T. E. (1996) Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures, J. Am. Chem. Soc. 118, 7640–7641.

    Article  Google Scholar 

  28. Gao M., Richter B., Kirstein S., Mohwald H. (1998) Electroluminescence study on self-assembled films of PPV and CdSe nanoparticles, J. Phys. Chem. 102, 4096–4103.

    Google Scholar 

  29. (a) Kaschak D. M. Mallouk T. E. (1996) Inter-and intralayer energy transfer in zirconium phosphate-poly(allylamine hydrochloride) multilayers: an efficient photon antenna and a spectroscopic ruler for self-assembled thin films, J. Am. Chem. Soc. 118, 4222–4224; (b) Kaschak D. M., Lean J. T., Waraksa C. C., Saupe G., Usami H., Mallouk T. E. (1999) Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: towards an inorganic “Leaf”, J. Am. Chem. Soc, 121, 3435-3445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kovtyukhova, N.I. et al. (2000). Self-Assembly of Nanoblocks and Molecules in Optical Thin-Film Nanostructures. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics