Visible and Infrared Photoluminescence from Deposited Germanium-Oxide Clusters and from Ge Nanocrystals

  • Atsushi Nakajima
  • Minoru Fujii
  • Shinji Hayashi
  • Koji Kaya
Chapter
Part of the NATO Science Series book series (NAII, volume 6)

Abstract

Following Canham’s report of visible photoluminescence (PL) from porous silicon,1 the optical and electronic properties of nano-structures made from silicon (Si) or germanium (Ge) have attracted much attention, because they open a new possibility for photonic applications by the use of group-IV elements. In particular, PL properties of Si nanocrystals (nc-Si) have been widely studied and the relationship between the size of nc-Si and the PL peak energy has been revealed experimentally for at least red and near-infrared (NIR) PL.2–4 According to these reports, nc-Si with about 4 nm in diameter exhibits a PL peak at about 1.4 eV. As the size decreases further, the PL peak shifts to higher energies and reaches the visible region for nc-Si smaller than 2 nm. In contrast to nc-Si, there have been few reports on the size dependence of the PL spectra for Ge nanocrystals (nc-Ge). The nc-Ge has been prepared by several methods and these samples exhibit strong visible PL at about 2.2 eV independent of the size of nc-Ge (2–15 nm) and the preparation methods.5–11

Keywords

Quartz Recombination Tungsten Fluorine Auger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canham, L. T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048.ADSCrossRefGoogle Scholar
  2. 2.
    Takagi, H., Ogawa, H., Yamazaki, Y. Ishizaki, A,, and Nakagiri, T. (1990) Quantum size effects on photoluminescene in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380.ADSCrossRefGoogle Scholar
  3. 3.
    Schuppler, S., Friedeman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H, Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H. (1995) Size, shape, and composition of luminescent species in oxidized Si nanocrystais and H-passivated porous Si. Phys. Rev. B 52, 4910–4925.ADSCrossRefGoogle Scholar
  4. 4.
    Kanzawa, Y, Kageyama, T., Takeoka, S. Fujii, M., Hayashi, S., and Yamamoto, K. (1997) Size-dependent near-infrared photoluminescence spectra of Si nanocrystais embedded in SiO2 matrices. Solid Stale Commun. 102, 533–537.ADSCrossRefGoogle Scholar
  5. 5.
    Maeda, Y. (1995) Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys. Rev. B 51, 1658–1670ADSCrossRefGoogle Scholar
  6. 6.
    Okamoto, S. and Kanemitsu, Y, (1996) Photoluminescence properties of surface-oxidized Ge nanocrystais: Surface localization of excitons. Phys. Rev. B 54, 16421–16424.ADSCrossRefGoogle Scholar
  7. 7.
    Paine, D. C., Caragianis, C., Kim, T, Y., Shigesato, Y., and Ishahara, T. (1993) Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2. Appl. Phys. Lett. 62, 2842–2844.ADSCrossRefGoogle Scholar
  8. 8.
    Dutta, A. K. (1996) Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition. Appl. Phys. Lett. 68, 1189–1191.ADSCrossRefGoogle Scholar
  9. 9.
    Nogami, M. and Abe, Y, (1994) Sol-gel method for synthesizing visible photoluminescent nanosized Ge-crystal-doped silica glasses. Appl. Phys. Lett. 65, 2545–2547.ADSCrossRefGoogle Scholar
  10. 10.
    Saito, A. and Suemoto, T. (1997) Luminescence in selectively excited germanium microcrystallites. Phys. Rev. B 56, R1688–R1691.ADSCrossRefGoogle Scholar
  11. 11.
    Craciun, V., Leborgne, C. B., Nicholls, E. J., and Boyd, I. W. (1996) Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of silicon-germanium. Appl. Phys. Lett. 69, 1506–1508.ADSCrossRefGoogle Scholar
  12. 12.
    Negishi, Y., Kawamata, H., Hayakawa, F., Nakajima, A., and Kaya, K. (1998) The infrared HOMO-LUMO gap of germanium clusters. Chem. Phys. Lett. 294, 370–376.ADSCrossRefGoogle Scholar
  13. 13.
    Negishi, Y., Nakamura, Y., Nagao, S., Nakajima, A., Kamei, S., and Kaya, K. Visible photoluminescence of the deposited germanium-oxide prepared from clusters in the gas phase, submitted to J. Appl. Phys. Google Scholar
  14. 14.
    Takeoka, S., Fujii, M,, Hayashi, S, and Yamamoto, K. (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystais embedded in SiO2 matrices. Phys. Rev. B 58, 7921–7925.ADSCrossRefGoogle Scholar
  15. 15.
    Negishi, Y., Kawamata, H., Hayase, T., Gomei, M., Kishi, R., Hayakawa, F., Nakajima, A., and Kaya, K. (1997) Photoelectron spectroscopy of germanium-fluorine binary cluster anions: the HOMO-LUMO gap estimation of Gen clusters. Chem. Phys. Lett. 269, 199–207.ADSCrossRefGoogle Scholar
  16. 16.
    Cheshnovsky, O., Yang, S. H., Pettiette, P. L., Craycraft, M. J., and Smalley, R. E. (1987) Magnetic time-of-flight photoelectron spectrometer for mass-selected negative cluster ions. Rev. Sci. Instrum. 58, 2131–2137.ADSCrossRefGoogle Scholar
  17. 17.
    Ganteför, G., Meiwes-Broer, K. H., and Lutz, H. O., (1988) Photodetachment spectroscopy of cold aluminum cluster ions. Phys. Rev. A 37, 2716–2718.ADSCrossRefGoogle Scholar
  18. 18.
    Nakajima, A., Taguwa, T., Hoshino, K., Sugioka, T., Naganuma, T., Ono, F., Watanabe, K., Nakao, K., Konishi, Y., Kishi, R., and Kaya, K. (1993) Photoelectron spectroscopy of (C6F6)n - and (Au-C6F6)- clusters. Chem. Phys. Lett. 214, 22–26.ADSCrossRefGoogle Scholar
  19. 19.
    Hotop, H. and Lineberger, W. C. (1975) Binding energies in atomic negative ions. J. Phys. Chem. Ref. Data. 4, 539–576.ADSCrossRefGoogle Scholar
  20. 20.
    Esaulov, V. A. (1986) Electron detachment from atomic negative ions. Ann. Phys. Fr. 11, 493–592.ADSCrossRefGoogle Scholar
  21. 21.
    Kubo, K., Kondow, H., and Nishihara, H. private communication.Google Scholar
  22. 22.
    Schmeisser, D., Schnell, R. D., Bogen, A., Himpset, F. J., Rieger, D., Landgren, G., and Morar, J. F., (1986) Surface oxidation states of germanium, Surf. Sci. 172, 455–465.ADSCrossRefGoogle Scholar
  23. 23.
    Fujii, M., Hayashi, S., and Yamamoto, K., (1990) Raman scattering from quantum dots of Ge embedded in SiO2 thin films. Appl. Phys. Lett. 57, 2692–2694.ADSCrossRefGoogle Scholar
  24. 24.
    Fujii, M., Hayashi, S., and Yamamoto, K., (1991) Growth of Ge microcrystals in SiO2 thin film matrices: a Raman and electron microscopic study, Jpn. J. Appl. Phys. 30, 687–694.ADSCrossRefGoogle Scholar
  25. 25.
    Cheshnovsky, O., Yang, S. H., Pettiette, C. L., Craycraft, M. J., Liu, Y., and Smalley, R. E. (1987) Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem. Phys., Lett., 138, 119–124.ADSCrossRefGoogle Scholar
  26. 26.
    Burton, G. R., Xu, C., Arnold, C. C., and Neumark, D. M. (1996) Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions. J. Chem. Phys., 104, 2757–2764.ADSCrossRefGoogle Scholar
  27. 27.
    Raghavachari, K. and Rohlfing, C. M. (1991) Si10 -: electron affinities of small silicon clusters. J. Chem. Phys., 94, 3670–3678ADSCrossRefGoogle Scholar
  28. 28.
    Kishi, R., Negishi, Y., Kawamata, H., Iwata, S., Nakajima, A., and Kaya, K. (1998) Geometric and electronic structures of fluorine bound silicon clusters. J. Chem. Phys. 108, 8039–8058.ADSCrossRefGoogle Scholar
  29. 29.
    Szabo, A. and Ostlund, N. L. “Modern Quantum Chemistiy” (Dover Publications, Mineola, 1996), p. 85.Google Scholar
  30. 30.
    Dai, D. and Balasubramanian, K. (1992) Electronic structure of group IV tetramers (Si4 — Pb4). J. Chem. phys. 96, 8345–8353.ADSCrossRefGoogle Scholar
  31. 31.
    Kittel, C. “ Introduction to Solid State Physics ” 6th Ed. (Willey, New York, 1986).Google Scholar
  32. 32.
    G. Herzberg, “Spectra of Diatomic Molecule” (Van Nostrand Reinhold Company Inc., New York, 1950), p. 530.Google Scholar
  33. 33.
    Boldyrev, A. I., Simons, J., Zakrzewski, V. G., and von Niessen, W. (1994) Vertical and adiabatic ionization energies and electron affinities of new SinC and SinO (n=1-3) molecules. J. Phys. Chem. 98, 1427–1435.CrossRefGoogle Scholar
  34. 34.
    von Behren, J., van Bunren, T., Zacharias, M., Chimowits, E. H., and Fauchet, P. M. (1998) Quantum confinement in nanoscalc silicon: the correlation of size with bandgap and luminescence. Solid State Commun. 105, 317–322.ADSCrossRefGoogle Scholar
  35. 35.
    Rebohle, L., von Borany, J., Yankov, R. A., Skorupa, W., Tyschenko, I. E., Fröb, H., and Leo, K. (1997) Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers. Appl. Phys. Lett. 71, 2809–2811.ADSCrossRefGoogle Scholar
  36. 36.
    Hunter, J. M., Fye, J. L., Jarrold, M. F., and Bower, J. E., (1994) Structural transitions in size-selected germanium cluster ions. Phys. Rev. Lett. 73, 2063–2066.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Atsushi Nakajima
    • 1
  • Minoru Fujii
    • 2
  • Shinji Hayashi
    • 2
  • Koji Kaya
    • 3
  1. 1.Department of ChemistryKeio UniversityKohoku-ku, YokohamaJapan
  2. 2.Department of Electrical and Electronics EngineeringKobe UniversityRokkodai, Nada, KobeJapan
  3. 3.Institute for Molecular ScienceMyodaiji, OkazakiJapan

Personalised recommendations