Skip to main content

Visible and Infrared Photoluminescence from Deposited Germanium-Oxide Clusters and from Ge Nanocrystals

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

  • 265 Accesses

Abstract

Following Canham’s report of visible photoluminescence (PL) from porous silicon,1 the optical and electronic properties of nano-structures made from silicon (Si) or germanium (Ge) have attracted much attention, because they open a new possibility for photonic applications by the use of group-IV elements. In particular, PL properties of Si nanocrystals (nc-Si) have been widely studied and the relationship between the size of nc-Si and the PL peak energy has been revealed experimentally for at least red and near-infrared (NIR) PL.2–4 According to these reports, nc-Si with about 4 nm in diameter exhibits a PL peak at about 1.4 eV. As the size decreases further, the PL peak shifts to higher energies and reaches the visible region for nc-Si smaller than 2 nm. In contrast to nc-Si, there have been few reports on the size dependence of the PL spectra for Ge nanocrystals (nc-Ge). The nc-Ge has been prepared by several methods and these samples exhibit strong visible PL at about 2.2 eV independent of the size of nc-Ge (2–15 nm) and the preparation methods.5–11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canham, L. T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048.

    Article  ADS  Google Scholar 

  2. Takagi, H., Ogawa, H., Yamazaki, Y. Ishizaki, A,, and Nakagiri, T. (1990) Quantum size effects on photoluminescene in ultrafine Si particles. Appl. Phys. Lett. 56, 2379–2380.

    Article  ADS  Google Scholar 

  3. Schuppler, S., Friedeman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H, Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H. (1995) Size, shape, and composition of luminescent species in oxidized Si nanocrystais and H-passivated porous Si. Phys. Rev. B 52, 4910–4925.

    Article  ADS  Google Scholar 

  4. Kanzawa, Y, Kageyama, T., Takeoka, S. Fujii, M., Hayashi, S., and Yamamoto, K. (1997) Size-dependent near-infrared photoluminescence spectra of Si nanocrystais embedded in SiO2 matrices. Solid Stale Commun. 102, 533–537.

    Article  ADS  Google Scholar 

  5. Maeda, Y. (1995) Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys. Rev. B 51, 1658–1670

    Article  ADS  Google Scholar 

  6. Okamoto, S. and Kanemitsu, Y, (1996) Photoluminescence properties of surface-oxidized Ge nanocrystais: Surface localization of excitons. Phys. Rev. B 54, 16421–16424.

    Article  ADS  Google Scholar 

  7. Paine, D. C., Caragianis, C., Kim, T, Y., Shigesato, Y., and Ishahara, T. (1993) Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2. Appl. Phys. Lett. 62, 2842–2844.

    Article  ADS  Google Scholar 

  8. Dutta, A. K. (1996) Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition. Appl. Phys. Lett. 68, 1189–1191.

    Article  ADS  Google Scholar 

  9. Nogami, M. and Abe, Y, (1994) Sol-gel method for synthesizing visible photoluminescent nanosized Ge-crystal-doped silica glasses. Appl. Phys. Lett. 65, 2545–2547.

    Article  ADS  Google Scholar 

  10. Saito, A. and Suemoto, T. (1997) Luminescence in selectively excited germanium microcrystallites. Phys. Rev. B 56, R1688–R1691.

    Article  ADS  Google Scholar 

  11. Craciun, V., Leborgne, C. B., Nicholls, E. J., and Boyd, I. W. (1996) Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of silicon-germanium. Appl. Phys. Lett. 69, 1506–1508.

    Article  ADS  Google Scholar 

  12. Negishi, Y., Kawamata, H., Hayakawa, F., Nakajima, A., and Kaya, K. (1998) The infrared HOMO-LUMO gap of germanium clusters. Chem. Phys. Lett. 294, 370–376.

    Article  ADS  Google Scholar 

  13. Negishi, Y., Nakamura, Y., Nagao, S., Nakajima, A., Kamei, S., and Kaya, K. Visible photoluminescence of the deposited germanium-oxide prepared from clusters in the gas phase, submitted to J. Appl. Phys.

    Google Scholar 

  14. Takeoka, S., Fujii, M,, Hayashi, S, and Yamamoto, K. (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystais embedded in SiO2 matrices. Phys. Rev. B 58, 7921–7925.

    Article  ADS  Google Scholar 

  15. Negishi, Y., Kawamata, H., Hayase, T., Gomei, M., Kishi, R., Hayakawa, F., Nakajima, A., and Kaya, K. (1997) Photoelectron spectroscopy of germanium-fluorine binary cluster anions: the HOMO-LUMO gap estimation of Gen clusters. Chem. Phys. Lett. 269, 199–207.

    Article  ADS  Google Scholar 

  16. Cheshnovsky, O., Yang, S. H., Pettiette, P. L., Craycraft, M. J., and Smalley, R. E. (1987) Magnetic time-of-flight photoelectron spectrometer for mass-selected negative cluster ions. Rev. Sci. Instrum. 58, 2131–2137.

    Article  ADS  Google Scholar 

  17. Ganteför, G., Meiwes-Broer, K. H., and Lutz, H. O., (1988) Photodetachment spectroscopy of cold aluminum cluster ions. Phys. Rev. A 37, 2716–2718.

    Article  ADS  Google Scholar 

  18. Nakajima, A., Taguwa, T., Hoshino, K., Sugioka, T., Naganuma, T., Ono, F., Watanabe, K., Nakao, K., Konishi, Y., Kishi, R., and Kaya, K. (1993) Photoelectron spectroscopy of (C6F6)n - and (Au-C6F6)- clusters. Chem. Phys. Lett. 214, 22–26.

    Article  ADS  Google Scholar 

  19. Hotop, H. and Lineberger, W. C. (1975) Binding energies in atomic negative ions. J. Phys. Chem. Ref. Data. 4, 539–576.

    Article  ADS  Google Scholar 

  20. Esaulov, V. A. (1986) Electron detachment from atomic negative ions. Ann. Phys. Fr. 11, 493–592.

    Article  ADS  Google Scholar 

  21. Kubo, K., Kondow, H., and Nishihara, H. private communication.

    Google Scholar 

  22. Schmeisser, D., Schnell, R. D., Bogen, A., Himpset, F. J., Rieger, D., Landgren, G., and Morar, J. F., (1986) Surface oxidation states of germanium, Surf. Sci. 172, 455–465.

    Article  ADS  Google Scholar 

  23. Fujii, M., Hayashi, S., and Yamamoto, K., (1990) Raman scattering from quantum dots of Ge embedded in SiO2 thin films. Appl. Phys. Lett. 57, 2692–2694.

    Article  ADS  Google Scholar 

  24. Fujii, M., Hayashi, S., and Yamamoto, K., (1991) Growth of Ge microcrystals in SiO2 thin film matrices: a Raman and electron microscopic study, Jpn. J. Appl. Phys. 30, 687–694.

    Article  ADS  Google Scholar 

  25. Cheshnovsky, O., Yang, S. H., Pettiette, C. L., Craycraft, M. J., Liu, Y., and Smalley, R. E. (1987) Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem. Phys., Lett., 138, 119–124.

    Article  ADS  Google Scholar 

  26. Burton, G. R., Xu, C., Arnold, C. C., and Neumark, D. M. (1996) Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions. J. Chem. Phys., 104, 2757–2764.

    Article  ADS  Google Scholar 

  27. Raghavachari, K. and Rohlfing, C. M. (1991) Si10 -: electron affinities of small silicon clusters. J. Chem. Phys., 94, 3670–3678

    Article  ADS  Google Scholar 

  28. Kishi, R., Negishi, Y., Kawamata, H., Iwata, S., Nakajima, A., and Kaya, K. (1998) Geometric and electronic structures of fluorine bound silicon clusters. J. Chem. Phys. 108, 8039–8058.

    Article  ADS  Google Scholar 

  29. Szabo, A. and Ostlund, N. L. “Modern Quantum Chemistiy” (Dover Publications, Mineola, 1996), p. 85.

    Google Scholar 

  30. Dai, D. and Balasubramanian, K. (1992) Electronic structure of group IV tetramers (Si4 — Pb4). J. Chem. phys. 96, 8345–8353.

    Article  ADS  Google Scholar 

  31. Kittel, C. “ Introduction to Solid State Physics ” 6th Ed. (Willey, New York, 1986).

    Google Scholar 

  32. G. Herzberg, “Spectra of Diatomic Molecule” (Van Nostrand Reinhold Company Inc., New York, 1950), p. 530.

    Google Scholar 

  33. Boldyrev, A. I., Simons, J., Zakrzewski, V. G., and von Niessen, W. (1994) Vertical and adiabatic ionization energies and electron affinities of new SinC and SinO (n=1-3) molecules. J. Phys. Chem. 98, 1427–1435.

    Article  Google Scholar 

  34. von Behren, J., van Bunren, T., Zacharias, M., Chimowits, E. H., and Fauchet, P. M. (1998) Quantum confinement in nanoscalc silicon: the correlation of size with bandgap and luminescence. Solid State Commun. 105, 317–322.

    Article  ADS  Google Scholar 

  35. Rebohle, L., von Borany, J., Yankov, R. A., Skorupa, W., Tyschenko, I. E., Fröb, H., and Leo, K. (1997) Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers. Appl. Phys. Lett. 71, 2809–2811.

    Article  ADS  Google Scholar 

  36. Hunter, J. M., Fye, J. L., Jarrold, M. F., and Bower, J. E., (1994) Structural transitions in size-selected germanium cluster ions. Phys. Rev. Lett. 73, 2063–2066.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakajima, A., Fujii, M., Hayashi, S., Kaya, K. (2000). Visible and Infrared Photoluminescence from Deposited Germanium-Oxide Clusters and from Ge Nanocrystals. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics