Skip to main content

Silicon Nanostructures and their Interactions with Erbium Ions

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

  • 261 Accesses

Abstract

Silicon, the leading semiconductor in microelectronics industry, has for a long time been considered unsuitable for optoelectronic applications which remained the domain of III–V semiconductors and glass fibers. This is mainly due to the silicon indirect bandgap, which makes it a poor emitter, and to the absence of linear electro-optic effects. The enormous progress in communication technologies in the last years resulted in an increased demand for optoelectronic functions integrated with electronic circuits. This would allow to couple the information processing capabilities of microelectronics with the efficient interconnection properties of optoelectronics. In principle, silicon would be the material of choice, due to its mature processing technology and to its unrivaled domain in microelectronics, the main limiting step being the absence of efficient Sibased light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canham, L.T. (1993) Progress towards crystalline-silicon-based light-emitting diodes, MRS Bulletin 18, 22–28

    Google Scholar 

  2. Canham, L.T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, 1046–1048.

    Article  ADS  Google Scholar 

  3. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Nakagiri, T. (1990) Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 56, 2379–2380.

    Article  ADS  Google Scholar 

  4. Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T. and Itoh, N. (1994) Visible photoluminescence in Si+–implanted silica glass, J. Appl. Phys. 75, 7779–7783.

    Article  ADS  Google Scholar 

  5. Zhu, J.G., White, C.W., Budai, J.D., Withrow, S.P., and Chen, Y. (1995) Growth of Ge, Si and SiGe nanocrystals in SiO2 matrices, J. Appl. Phys. 78, 4386–4389.

    Article  ADS  Google Scholar 

  6. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A. (1996) The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals, Appl. Phys. Lett. 68, 2511–2513.

    Article  ADS  Google Scholar 

  7. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A. (1996) Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2, Appl. Phys. Lett. 69, 2033–2035.

    Article  ADS  Google Scholar 

  8. Brongersma, M.L., Polman, A., Min, K.S., Boer, E., Tambo, T., and Atwater, H.A. (1998) Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation, Appl. Phys. Lett. 72, 2577–2579.

    Article  ADS  Google Scholar 

  9. Song, H.Z., and Bao, X.M. (1997) Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms, Phys. Rev. B 55, 6988–6993.

    Article  ADS  Google Scholar 

  10. Shimizu-Iwayama, T., Kunumado, N., Hole, D.E., and Townsend, P. (1998) Optical properties of silicon nanoclusters fabricated by ion implantation, J. Appl. Phys. 83, 6018–6022.

    Article  ADS  Google Scholar 

  11. Lockwood, D.J., Lu, Z.H., and Baribeau, J.M. (1996) Quantum confined luminescence in Si/SiO2 superlattices, Phys. Rev. Lett. 96, 539–541.

    Article  ADS  Google Scholar 

  12. D’Avitaya, F.A., Vervoort, L., Bassani, F., Ossicini, S., Fasolino, A., and Bernardini, F. (1995) Light emission at room temperature from Si/CaF2 multilayers, Europhysics Lett. 31, 25–30.

    Article  ADS  Google Scholar 

  13. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M. (1996) Silicon-based visible light-emitting devices integrated into microelectronic circuits, Nature 384, 338–341.

    Article  ADS  Google Scholar 

  14. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A. (1983) 1.54-μm luminescence of erbium-implanted Hl-V semiconductors and silicon, Appl. Phys, Lett. 43, 943–945.

    Article  ADS  Google Scholar 

  15. Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.H., Poate, J.M., and Kimerling, L.C. (1991) Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon, J. Appl. Phys. 70, 2672–26

    Google Scholar 

  16. Palm, J., Gan, F., Zheng, B., Mitchel, J., and Kimerling, L.C. (1996) Electroluminescence of erbium-doped silicon, Phys. Rev. B 54, 17603–17615.

    Article  ADS  Google Scholar 

  17. Priolo, F., Franzö, G., Coffa, S., and Camera, A. (1998) Excitation and nonradiative deexcitation processes of Er3+ in crystalline silicon, Phys. Rev. B 57, 4443–4455.

    Article  ADS  Google Scholar 

  18. Franzò, G., Priolo, F., Coffa, S., Polman A., and Camera, A. (1994) Room temperature luminescence from Er-doped crystalline silicon, Appl. Phys. Lett. 64, 2235–2237.

    Article  ADS  Google Scholar 

  19. Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C, Jacobson, D.C., and Poate, J.M. (1994) Roomtemperature sharp line electroluminescence at λ=154 μm from an erbium-doped, silicon light-emitting diode, Appl. Phys. Lett. 64, 2842–2844.

    Article  ADS  Google Scholar 

  20. Stimmer, J., Reittinger, A., Nützel, J.F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch. (1996) Electroluminescence of erbium-oxygen-doped silicon diodes grown by molecular beam epitaxy, Appl. Phys. Lett. 68, 3290–3292.

    Article  ADS  Google Scholar 

  21. Du, C-X., Ni, W-X., Joelsson, K.B., and Hansson, G.V, (1997) Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy, Appl. Phys. Lett. 71, 1023–1025.

    Article  ADS  Google Scholar 

  22. Franzö, G., Coffa, S., Priolo, F., and Spinella, C. (1997) Mechanism and performance of forward and reverse bias electroluminescence 1.54 μm from Er-doped Si diodes, J. Appl. Phys. 81, 2784-2793.

    Google Scholar 

  23. Kenyon, A.J., Trwoga, P.F., Federighi, M., and Pitt, C.W. (1994) Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions, J. Phys.: Condens. Matter 6, L319–L324.

    Article  ADS  Google Scholar 

  24. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K. (1997) 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Sinanocrystals to Er3+, Appl. Phys. Lett. 71, 1198–1200.

    Article  ADS  Google Scholar 

  25. Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K. (1998) Photoluminescence from SiO2 films containing Si nanocrystal and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+, J. Appl. Phys. 84, 4525–4531.

    Article  ADS  Google Scholar 

  26. Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H., and Aoyagi, Y. (1999) Time response of 1.54 μm emission from highly Er-doped nanocrystalline Si thin films prepared by laser ablation, Appl. Phys. Lett. 74, 377–379.

    Article  ADS  Google Scholar 

  27. Franzö, G,, Vinciguerra, V., and Priolo, F. (1999) The excitation mechanism of rare-earth ions in silicon nanocrystals, Appl. Phys. A 69, 3–12.

    Article  ADS  Google Scholar 

  28. Franzö, G., Iacona, F., Vinciguerra, V., and Priolo, F. (1999) Enhanced rare earth luminescence in silicon nanocrystals, Mat. Sci. & Eng. B 69/70, 338–341.

    Google Scholar 

  29. Chryssou, C.E., Kenyon, A.J., Iwayama, T.S., Pitt, C.W., and Hole, D.E. (1999) Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films, Appl. Phys. Lett. 75, 2011–2013.

    Article  ADS  Google Scholar 

  30. Franzö, G., Pacifici, D., Vinciguerra, V., Priolo, F., and Iacona, F. (2000) Er3+ ions-Si nanocrystals interactions and their effects on the luminescence properties, Appl. Phys. Lett. 76, 2167–2169.

    Article  ADS  Google Scholar 

  31. Franzö, G., Vinciguerra, V., and Priolo, F. (2000) Room temperature luminescence from rare earth ions implanted into Si nanocrystals, Phil. Mag. 80, 719–728.

    Article  Google Scholar 

  32. Iacona, F., Franzö, G., and Spinella, C. (2000) Correlation between luminescence and structural properties of Si nanocrystals, J. Appl. Phys. 87, 1295–1303.

    Article  ADS  Google Scholar 

  33. Vinciguerra, V., Franzö, G., Priolo, F., Iacona, F., and Spinella, C. (1 June 2000 issue) Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices, J. Appl. Phys. 87, 8165–8173.

    Article  ADS  Google Scholar 

  34. Franzö, G., Iacona, F., Spinella, C., Cammarata, S., and Grimaldi, M.G. (2000) Size dependence of the luminescence properties in Si nanocrystals, Mat. Sci. & Eng. B 69/70 454–457.

    Article  Google Scholar 

  35. Wolkin, M.V., Jörne, J., Fauchet, P.M., Allan. G., and Delerue, C. (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen, Phys. Rev. Lett. 82, 197–200.

    Article  ADS  Google Scholar 

  36. Polman, A. (1997) Erbium implanted thin film photonic materials, J. Appl. Phys. 82, 1–39

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Priolo, F., Franzò, G., Iacona, F. (2000). Silicon Nanostructures and their Interactions with Erbium Ions. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics