Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 85))

Abstract

Three different time-domain system identification algorithms are presented in this paper to estimate the parameters of an extended Bouc-Wen hysteretic model. These algorithms include the simplex, extended Kalman filter, and generalized reduced gradient methods. The effectiveness of the proposed algorithms is demonstrated through simulations of nonlinear systems with pinching and degradation characteristics. Due to very modest computing requirements, the proposed identification algorithms can be acceptable as a basic tool for estimating hysteretic parameters in engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Bouc, R. (1967) Forced Vibration of Mechanical Systems with Hysteresis, Proceedings of the 4-th International Conference. on Nonlinear Oscillations, Prague, Czechoslovakia.

    Google Scholar 

  • Carpentier, J. and Abadie, J. (1966)Generalisation de la•methode du gradient reduit de Wolfe au cas de constraintes nonlineaires, Proceedings of IFORS Congress, Cambridge, Mass., August 29-September 2.

    Google Scholar 

  • Chames, A. and Cooper, W.W. (1957) Nonlinear Power of Adjacent Extreme Point Methods in Linear Programming, Econometrica, 25:132.

    Article  MathSciNet  Google Scholar 

  • Foliente, G. C. (1995) Hysteretic Modeling of Wood Joints and Structural Systems, Journal of Structural Engineering, ASCE 121, 1013–1022.

    Article  Google Scholar 

  • Himmelblau, D. M. (1972) Applied Nonlinear Programming, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Hjelmstad, K.D., Banan, M.R. and Banan, M.R. (1995) Time-Domain Parameter Estimation Algorithm For Structures. I: Computational Aspects, Journal of Engineering Mechanics Vol. 121, No. 3, 424–434.

    Article  Google Scholar 

  • Hoshia, M., and Saito, E. (1984) Structural Identification by Extended Kalman Filter, ASCE Journal of Engineering Mechanics, Vol. 110, pp. 1757–1770.

    Article  Google Scholar 

  • Imai, H., Yun, C.-B., Maruyama, O. and Shinozuka, M. (1989) Fundamentals of system identification in structural dynamics, Probabilistic Engineering Mechanics, Vol. 4, No. 4, 162–173.

    Article  Google Scholar 

  • Lasdon, L.S., Warren, A.D., Jain, A., and Ratner, M. (1978) Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming, ACM Trans. Math. Software 4.

    Google Scholar 

  • Maruyama, O., Yun, C. B., Hoshiya, M., and Shinozuka, M. (1989) Program EXKAL2 for Identification of Structural Dynamic Systems, Technical Report NCEER-89–0014, National Center for Earthquake Engineering Research, Buffalo, New York.

    Google Scholar 

  • Lin, J-S., and Zhang, Y. (1994) Nonlinear Structural Identification using Extended Kalman Filter, Computers & Structures, Vol. 52, pp. 757–764.

    Article  MATH  Google Scholar 

  • Loh, C.-H., and Chung, S.-T. (1993) A Three-Stage Identification Approach for Hysteretic Systems, Earthquake Engineering and Structural Dynamics, Vol. 22, 129–150.

    Article  Google Scholar 

  • Nelder, J.A., and Mead, R. (1965) A Simplex Method for Function Minimization, Computer Journal, Vol.7, 308.

    Article  MATH  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988) Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, United Kingdom.

    MATH  Google Scholar 

  • Sozen, M.A. (1974) Hysteresis in structural elements, Applied Mechanics in Earthquake Engineering, W.D. Iwan, ed., ASME, New York, NY, 63–98.

    Google Scholar 

  • Tugnait, J. K.(1985)Constrained Signal Restoration via Iterated Extended Kalman Filtering, IEEE Transaction on Acoustics, speech, and signal processing, Vol. ASSP-33, pp. 472–475.

    Article  Google Scholar 

  • Wen, Y. K. (1976) Method for Random Vibration of Hysteretic Systems, ASCE Journal of Engineering Mechanics, Vol. 102, 249–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zhang, H., Paevere, P., Yang, Y., Foliente, G.C., Ma, F. (2001). System Identification of Hysteretic Structures. In: Narayanan, S., Iyengar, R.N. (eds) IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics. Solid Mechanics and its Applications, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0886-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0886-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3808-9

  • Online ISBN: 978-94-010-0886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics