Skip to main content

Notch Effects on the Fracture Behaviour of Orthotropic Materials

  • Chapter
Notch Effects in Fatigue and Fracture

Part of the book series: NATO Science Series ((NAII,volume 11))

Abstract

During the last fifty years, composite materials have known a large development in the range of aeronautics and space. To make use of these materials, it has been necessary to consider the different joining techniques. When using fasteners such as pins or bolts, it requires holes and notches, which are sources of stress concentration. Of course, gluing techniques are more convenient, if applicable, but stress concentration is still present at the bond line toe. As a matter of fact, all these problems are also present in timber structures, where joining techniques mainly need holes and notches. This work presents the notch effect in orthotropic materials, with a special application to timber. Experimental work and finite element calculations are reported, showing a strong effect of the orthotropy of the mechanical properties on the stress gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. ASTM STP 636, (1977), “Fatigue of filamentary composite materials”, K.L. Reifsnider (eds).

    Google Scholar 

  2. ASTM STP 749, (1980), Joining of composite materials, Kedward, K.T. (ed.)

    Google Scholar 

  3. Chang, F.H., Gordon, D.E., Gardner, A.H., (1977) A study of fatigue damage in composites by nondestructive testing techniques, in K.L. Reifsnider, (eds) ASTM STP 636: Fatigue of filamentary composite materials, pp. 57–72.

    Google Scholar 

  4. Duchanois, G., (1984) Mesure de la ténacité et étude du comportement mécanique des joints bois-colle”, thèse de docteur-ingénieur, Institut National Polytechnique de Lorraine.

    Google Scholar 

  5. Haller, P., (1987) Mesure de la ténacité du bois collé—Modélisation de la ténacité par l’intermédiaire de la méthode des éléments finis et de la mécanique de la rupture, thèse de docteur de l’Institut National Polytechnique de Lorraine.

    Google Scholar 

  6. Hancock, J.R., (1974) Fatigue of metal-matrix composites, in L. J. Broutman (eds), Composites Materials: vol. 5 Fracture and Fatigue, pp 371–414.

    Google Scholar 

  7. Jodin, Ph., Pluvinage, G., Rodd, P.D. (1998) Pourquoi renforcer les assemblages dans la construction en bois ?, Annales du GC Bois, 3, 1–9.

    Google Scholar 

  8. Owen, M.J., (1974) Fatigue damage in glass-fiber-reinforced plastics, in L. J. Broutman (eds), Composites Materials: vol. 5 Fracture and Fatigue, pp. 314–340.

    Google Scholar 

  9. Owen, M.J., (1974) Fatigue of carbon-fiber-reinfoced plastics, in L. J. Broutman (eds), Composites Materials: vol. 5 Fracture and Fatigue, pp 342–369.

    Google Scholar 

  10. Ramani, S.V., Williams, D.P., (1976) Notched and unnotched fatigue behaviour of angle-ply graphite/epoxy composites, in K.L. Reifsnider, (eds) ASTM STP 636: Fatigue of filamentary composite materials, pp. 27–46.

    Google Scholar 

  11. Roderick, G.L., Whitcomb, J.D., (1976) Fatigue damage of notched boron/epoxy laminates under constant amplitude loading, in K.L. Reifsnider, (eds) ASTM STP 636: Fatigue of filamentary composite materials, pp. 73–88.

    Google Scholar 

  12. Schmitt, C., (1988) Étude expérimentale et simulation numérique par éléments finis de l’état de déformation et de la fissuration d’un matériau composite verre-époxyde unidirectionnel sollicité en traction-torsion, thèse de docteur de l’Institut National Polytechnique de Lorraine.

    Google Scholar 

  13. Sih, G.C., Paris, P.C., Irwin, G.R. (1965) On cracks in rectilinearly anisotropic bodies, International Journal of Fracture, 1, n°3, 189–203.

    Google Scholar 

  14. Soni, S.R., (1980) Failure analysis of composite laminates with a fastener hole, in K.T. Kedward, (ed.) ASTM STP 749: joining of composite materials, pp. 145–164.

    Google Scholar 

  15. Triboulot, P., (1981) Application de la mécanique de la rupture au bois massif considéré comme bois de construction” thèse de docteur-ingénieur Université de Technologie de Compiègne.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jodin, P. (2001). Notch Effects on the Fracture Behaviour of Orthotropic Materials. In: Pluvinage, G., Gjonaj, M. (eds) Notch Effects in Fatigue and Fracture. NATO Science Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0880-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0880-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6842-7

  • Online ISBN: 978-94-010-0880-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics