Advertisement

Inclusions Effect on the Notch Behaviour of a Low-Alloy Tempered Steel

  • R. Doglione
  • D. Firrao
Chapter
Part of the NATO Science Series book series (NAII, volume 11)

Abstract

A previous model describing ductile fracture initiation ahead of sharp crack as well as blunt notches is discussed. Its application to a quenched and tempered Ni-Cr-Mo steel led to a relationship between fracture toughness, inclusions spacing, strain hardening exponent and notch root radius p. This relationship was formulated on the hypothesis of constant (i.e. independent on p) critical notch root strain. It has been found that the independence of the critical notch root strain is consistent with the critical void growth ratio criterion for ductile fracture, thus substantiating the model on a micromechanical basis. Finally, the toughness-notch radius relationship, combined together with the EPRI J estimation scheme, has been used to propose a method for the calculation of ductile fracture initiation in notched structural components.

Keywords

Fracture Toughness Ductile Fracture Linear Elastic Fracture Mechanics Void Growth Notch Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dieter, G.E. (1988), Mechanical Metallurgy, 2nd edition, McGraw-Hill, 314–316.Google Scholar
  2. 2.
    McClintock, F.A. (1968), Int. J Fract. Mech. 4, pp. 101–130.Google Scholar
  3. 3.
    Griffis, C.A. and Spretnak, J. W. (1969), Trans. MSI 9, pp. 372–387.Google Scholar
  4. 4.
    Rice, J.R. (1968), A Path Indipendent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J Applied Mechanics, Trans. ASME E35, pp.379–386.ADSCrossRefGoogle Scholar
  5. 5.
    Roberti, R., Silva, G., Firrao, D. and De Benedetti, B. (1981), Influence of Notch Root Radius on Ductile Rupture Fracture Toughness Evaluation with Charpy-V Type Specimens, Int. J Fatigue 3, pp. 133–141.CrossRefGoogle Scholar
  6. 6.
    Firrao, D. and Robert, i R. (1984), On the Mechanisms of Ductile Fracture Nucleation ahead of a Sharp Crack, in M. Wells and J. D. Landes (eds.), Fracture: Interactions of Microstructure, Mechanisms and Mechanics, The Metallurgical Society of AIME, pp. 165–177Google Scholar
  7. 7.
    Firrao, D., Roberti, R. and La Vecchia, G. M (1989), Tempering Temperature and Blunt Notch Fracture Toughness of Ni-Cr-Mo Steels, in K. Salama, K. Ravi-Chandar, D. M. R. Taplin and P. Rama Rao (eds.), Advances in Fracture Research, ICF 7, vol. 4, Pergamon Press, pp. 2483–2490..Google Scholar
  8. 8.
    Firrao, D., Roberti, R., Doglione, R. and La Ve.echia, G. M. (1990), A Proposal for a Microstructurally Based. JIc, Determination, in D. Firrao (ed.), Fracture Behaviour and Design of Materials and Structures, ECF8, EMAS, vol. 2, pp. 1033–1038.Google Scholar
  9. 9.
    Tvergaard, V. (1982), On Localisation in Ductile Materials Containing Spherical Voids, International Journal of Fracture 18, pp. 237–252.Google Scholar
  10. 10.
    Tvergaard, V. and Needleman, A. (1984), Analysis of the Cup-Co, ne Fracture in a Round Tensile Bar, Acta Metallurgica 32, pp. 157–169.CrossRefGoogle Scholar
  11. 11.
    Sommer, E. and Aurich, D. (1991), On the Effect of Constraint on Ductile Fracture, in J. G. Blauel and K.-H. Schwalbe (eds.), Defect Assessment in Components—Fundamentals and Applications, ESIS/EGF9, Mechanical Engineering Publications, pp. 141–174.Google Scholar
  12. 12.
    La Vecchia, G.M. (1990), PhD Thesis, Politecnico di Milano, Milano, Italy.Google Scholar
  13. 13.
    Roberti R. La Vecchia G.M. and Firrao D. (1989) TenacitA alla frattura di un acciaio legato per bonifica r.invenuto a temperature comprese tra 550 e 65TC La metallurgia italiana 81 pp. 431–438 Google Scholar
  14. 14.
    Chipperfield, G.C. and Knott, J. F.(1975), Microstructure and Toughness of Structural Steels, Metals Techn. 2, pp. 45–51.Google Scholar
  15. 15.
    Lereim, J. and Embury, J. D. (1978), Some Aspect of the Process Zone Associated with the Fracture of Notched Bars, in A. R Rosenfield, H. L Gegel, D. F. Hasson, B. B Rath and J. R. Stephens (eds.), What Does the Charpy Test Really Tell Us, ASM, Metals Park, pp. 33–53.Google Scholar
  16. 16.
    Firrao, D. and Roberti, R. (1983) Ductile Fracture Nucleation ahead of Sharp Cracks, Metallurgical Science and Technology 1, pp. 5–13.Google Scholar
  17. 17.
    Rice, J.R. and Johnson, M. A. (1970) The Role of Large Crack Tip Geometry Changes in Plane Strain Fracture, in M. F. Kanninen, W. G. Adler, A. R. Rosenfield and R. I. Jaffee (eds.), Inelastic Behaviour of Solids, McGraw Hill, pp. 641–672.Google Scholar
  18. 18.
    Begley, J. A., Logsdon, W. A., and Landes, J. D. (1977), Ductile Rupture Blunt Notch Fracture Criterion, Flaw Growth and Fracture, ASTM STP 631, American Society for Testing and Materials, pp. 112–120.Google Scholar
  19. 19.
    Clausing, D.P. (1969), Effect of Plastic Strain State on Ductility and Toughness, Int. J Fract. Mech. 6, pp. 71–85.Google Scholar
  20. 20.
    Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press.Google Scholar
  21. 21.
    Griffiths, J.R. and Owen, D. R. J. (1971), J Mech. Phys. Solids 19, pp. 419–431.ADSCrossRefGoogle Scholar
  22. 22.
    Owen, D. R. 1, Nayac’d. C., Kfouri, A.P. and Griffiths, J. R. (1973), Int. J Num. Methods Engng 6, pp. 63–79.MATHCrossRefGoogle Scholar
  23. 23.
    François, D., Pineau, A. and Zaoui, A. (1992), Comportement Micanique des Matiriaux, Hermes, pp. 178–188.Google Scholar
  24. 24.
    Rice, J.R. and Tracey, D. M. (1969), On the Ductile Enlargement of Voids in Triaxial Stress Fields, J Mech. Phys. Solids 17, pp. 201–217.ADSCrossRefGoogle Scholar
  25. 25.
    Huang, Y. (1991), Accurate Dilatation Rates for Spherical Voids In Triaxial Stress Fields, J Applied Mechanics 58, pp. 1084–1086.ADSCrossRefGoogle Scholar
  26. 26.
    Bavineau, L, Burlet, H., Eripret, C. and Pineau, A. (1996), Modelling Ductile Stable Crack Growth in a C-Mn Steel with Local Approaches, Journal de Physique IV 6, Colloque C6, pp. C6-33-C6-42.Google Scholar
  27. 27.
    Kumar, V., German, M.D. and Shih, C. F. (1981), An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI Report NP-1931, Electric Power Research Institute, Palo Alto, CA, USA.Google Scholar
  28. 28.
    Tada, H., Paris, P.C. and Irwin, G. R. (1985), The Stress Analysis of Cracks Handbook, Paris Productions, St. Louis, USAGoogle Scholar
  29. 29.
    Murakami, Y. (1987), Stress Intensity Factors Handbook, Pergamon Press, New Jork.Google Scholar
  30. 30.
    Rooke, D. P. and Cartwright, D. J. (1976), Compendium of Stress Intensity Factors, Her Majesty’s Stationary Office, London.Google Scholar
  31. 31.
    Kumar, V., German, M. D., Wilkening, W. W., Andrews, W. R., De Lorenzi, H.G. and Mowbray, D. F. (1984), Advances in Elastic-Plastic Fracture Analysis, EPRI Report NP-3607, Electric Power Research Institute, Palo Alto, CA, USA.Google Scholar
  32. 32.
    Kumar, V. and German, M. D. (1988), Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders, EPRI Report NP-5596, Electric Power Research Institute, Palo Alto, CA, USA.Google Scholar
  33. 33.
    Zahoor, A. (1989), Ductile Fracture Handbook, Volume I: Circumferential Throughwall Cracks, EPRI Report NP-6301, Electric Power Research Institute, Palo Alto, CA, USA.Google Scholar
  34. 34.
    Zahoor, A. (19), Ductile Fracture Handbook, Volume 2, EPRI Report NP, Electric Power Research Institute, Palo Alta, CA, USA.Google Scholar
  35. 35.
    Miller, A.G. (1988), Review of Limit Loads of Structures Containing Defects, Int. J Pres. Ves.&Piping 32, pp, 197–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • R. Doglione
    • 1
  • D. Firrao
    • 1
  1. 1.Politecnico di TorinoTorinoItaly

Personalised recommendations