Skip to main content

Inclusions Effect on the Notch Behaviour of a Low-Alloy Tempered Steel

  • Chapter
Notch Effects in Fatigue and Fracture

Part of the book series: NATO Science Series ((NAII,volume 11))

  • 466 Accesses

Abstract

A previous model describing ductile fracture initiation ahead of sharp crack as well as blunt notches is discussed. Its application to a quenched and tempered Ni-Cr-Mo steel led to a relationship between fracture toughness, inclusions spacing, strain hardening exponent and notch root radius p. This relationship was formulated on the hypothesis of constant (i.e. independent on p) critical notch root strain. It has been found that the independence of the critical notch root strain is consistent with the critical void growth ratio criterion for ductile fracture, thus substantiating the model on a micromechanical basis. Finally, the toughness-notch radius relationship, combined together with the EPRI J estimation scheme, has been used to propose a method for the calculation of ductile fracture initiation in notched structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dieter, G.E. (1988), Mechanical Metallurgy, 2nd edition, McGraw-Hill, 314–316.

    Google Scholar 

  2. McClintock, F.A. (1968), Int. J Fract. Mech. 4, pp. 101–130.

    Google Scholar 

  3. Griffis, C.A. and Spretnak, J. W. (1969), Trans. MSI 9, pp. 372–387.

    Google Scholar 

  4. Rice, J.R. (1968), A Path Indipendent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J Applied Mechanics, Trans. ASME E35, pp.379–386.

    Article  ADS  Google Scholar 

  5. Roberti, R., Silva, G., Firrao, D. and De Benedetti, B. (1981), Influence of Notch Root Radius on Ductile Rupture Fracture Toughness Evaluation with Charpy-V Type Specimens, Int. J Fatigue 3, pp. 133–141.

    Article  Google Scholar 

  6. Firrao, D. and Robert, i R. (1984), On the Mechanisms of Ductile Fracture Nucleation ahead of a Sharp Crack, in M. Wells and J. D. Landes (eds.), Fracture: Interactions of Microstructure, Mechanisms and Mechanics, The Metallurgical Society of AIME, pp. 165–177

    Google Scholar 

  7. Firrao, D., Roberti, R. and La Vecchia, G. M (1989), Tempering Temperature and Blunt Notch Fracture Toughness of Ni-Cr-Mo Steels, in K. Salama, K. Ravi-Chandar, D. M. R. Taplin and P. Rama Rao (eds.), Advances in Fracture Research, ICF 7, vol. 4, Pergamon Press, pp. 2483–2490..

    Google Scholar 

  8. Firrao, D., Roberti, R., Doglione, R. and La Ve.echia, G. M. (1990), A Proposal for a Microstructurally Based. JIc, Determination, in D. Firrao (ed.), Fracture Behaviour and Design of Materials and Structures, ECF8, EMAS, vol. 2, pp. 1033–1038.

    Google Scholar 

  9. Tvergaard, V. (1982), On Localisation in Ductile Materials Containing Spherical Voids, International Journal of Fracture 18, pp. 237–252.

    Google Scholar 

  10. Tvergaard, V. and Needleman, A. (1984), Analysis of the Cup-Co, ne Fracture in a Round Tensile Bar, Acta Metallurgica 32, pp. 157–169.

    Article  Google Scholar 

  11. Sommer, E. and Aurich, D. (1991), On the Effect of Constraint on Ductile Fracture, in J. G. Blauel and K.-H. Schwalbe (eds.), Defect Assessment in Components—Fundamentals and Applications, ESIS/EGF9, Mechanical Engineering Publications, pp. 141–174.

    Google Scholar 

  12. La Vecchia, G.M. (1990), PhD Thesis, Politecnico di Milano, Milano, Italy.

    Google Scholar 

  13. Roberti R. La Vecchia G.M. and Firrao D. (1989) TenacitA alla frattura di un acciaio legato per bonifica r.invenuto a temperature comprese tra 550 e 65TC La metallurgia italiana 81 pp. 431–438

    Google Scholar 

  14. Chipperfield, G.C. and Knott, J. F.(1975), Microstructure and Toughness of Structural Steels, Metals Techn. 2, pp. 45–51.

    Google Scholar 

  15. Lereim, J. and Embury, J. D. (1978), Some Aspect of the Process Zone Associated with the Fracture of Notched Bars, in A. R Rosenfield, H. L Gegel, D. F. Hasson, B. B Rath and J. R. Stephens (eds.), What Does the Charpy Test Really Tell Us, ASM, Metals Park, pp. 33–53.

    Google Scholar 

  16. Firrao, D. and Roberti, R. (1983) Ductile Fracture Nucleation ahead of Sharp Cracks, Metallurgical Science and Technology 1, pp. 5–13.

    Google Scholar 

  17. Rice, J.R. and Johnson, M. A. (1970) The Role of Large Crack Tip Geometry Changes in Plane Strain Fracture, in M. F. Kanninen, W. G. Adler, A. R. Rosenfield and R. I. Jaffee (eds.), Inelastic Behaviour of Solids, McGraw Hill, pp. 641–672.

    Google Scholar 

  18. Begley, J. A., Logsdon, W. A., and Landes, J. D. (1977), Ductile Rupture Blunt Notch Fracture Criterion, Flaw Growth and Fracture, ASTM STP 631, American Society for Testing and Materials, pp. 112–120.

    Google Scholar 

  19. Clausing, D.P. (1969), Effect of Plastic Strain State on Ductility and Toughness, Int. J Fract. Mech. 6, pp. 71–85.

    Google Scholar 

  20. Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press.

    Google Scholar 

  21. Griffiths, J.R. and Owen, D. R. J. (1971), J Mech. Phys. Solids 19, pp. 419–431.

    Article  ADS  Google Scholar 

  22. Owen, D. R. 1, Nayac’d. C., Kfouri, A.P. and Griffiths, J. R. (1973), Int. J Num. Methods Engng 6, pp. 63–79.

    Article  MATH  Google Scholar 

  23. François, D., Pineau, A. and Zaoui, A. (1992), Comportement Micanique des Matiriaux, Hermes, pp. 178–188.

    Google Scholar 

  24. Rice, J.R. and Tracey, D. M. (1969), On the Ductile Enlargement of Voids in Triaxial Stress Fields, J Mech. Phys. Solids 17, pp. 201–217.

    Article  ADS  Google Scholar 

  25. Huang, Y. (1991), Accurate Dilatation Rates for Spherical Voids In Triaxial Stress Fields, J Applied Mechanics 58, pp. 1084–1086.

    Article  ADS  Google Scholar 

  26. Bavineau, L, Burlet, H., Eripret, C. and Pineau, A. (1996), Modelling Ductile Stable Crack Growth in a C-Mn Steel with Local Approaches, Journal de Physique IV 6, Colloque C6, pp. C6-33-C6-42.

    Google Scholar 

  27. Kumar, V., German, M.D. and Shih, C. F. (1981), An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI Report NP-1931, Electric Power Research Institute, Palo Alto, CA, USA.

    Google Scholar 

  28. Tada, H., Paris, P.C. and Irwin, G. R. (1985), The Stress Analysis of Cracks Handbook, Paris Productions, St. Louis, USA

    Google Scholar 

  29. Murakami, Y. (1987), Stress Intensity Factors Handbook, Pergamon Press, New Jork.

    Google Scholar 

  30. Rooke, D. P. and Cartwright, D. J. (1976), Compendium of Stress Intensity Factors, Her Majesty’s Stationary Office, London.

    Google Scholar 

  31. Kumar, V., German, M. D., Wilkening, W. W., Andrews, W. R., De Lorenzi, H.G. and Mowbray, D. F. (1984), Advances in Elastic-Plastic Fracture Analysis, EPRI Report NP-3607, Electric Power Research Institute, Palo Alto, CA, USA.

    Google Scholar 

  32. Kumar, V. and German, M. D. (1988), Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders, EPRI Report NP-5596, Electric Power Research Institute, Palo Alto, CA, USA.

    Google Scholar 

  33. Zahoor, A. (1989), Ductile Fracture Handbook, Volume I: Circumferential Throughwall Cracks, EPRI Report NP-6301, Electric Power Research Institute, Palo Alto, CA, USA.

    Google Scholar 

  34. Zahoor, A. (19), Ductile Fracture Handbook, Volume 2, EPRI Report NP, Electric Power Research Institute, Palo Alta, CA, USA.

    Google Scholar 

  35. Miller, A.G. (1988), Review of Limit Loads of Structures Containing Defects, Int. J Pres. Ves.&Piping 32, pp, 197–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doglione, R., Firrao, D. (2001). Inclusions Effect on the Notch Behaviour of a Low-Alloy Tempered Steel. In: Pluvinage, G., Gjonaj, M. (eds) Notch Effects in Fatigue and Fracture. NATO Science Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0880-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0880-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6842-7

  • Online ISBN: 978-94-010-0880-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics