Advertisement

Starquake-Induced Glitches in Pulsars

  • Richard I. Epstein
  • Bennett Link
Part of the Astrophysics and Space Science Library book series (ASSL, volume 254)

Abstract

The neutron star crust is rigid material floating on a neutron-proton liquid core. As the star’s spin rate slows, the changing stellar shape stresses the crust and causes fractures. Thesestarquakes,may trigger pulsar glitches as well as the jumps in spin-down rate that are observed to persist after some glitches. Earlier studies found that starquakes in spinning-down neutron stars push matter toward the magnetic poles, causing temporary misalignment of the star’s spin and angular momentum. After the star relaxes to a new equilibrium orientation, the magnetic poles are closer to the equator, and the magnetic braking torque is increased. The magnitude and sign of the predicted torque changes are in agreement with the observed persistent spin-down offsets. Here we examine the relaxation processes by which the new equilibrium orientation is reached. We find that the neutron superfluid in the inner crust slows as the star’s spin realigns with the angular momentum, causing the crust to spin more rapidly. For plausible parameters the time scale and the magnitude of the crust’s spin up agree with the giant glitches in the Vela and other pulsars.

Keywords

Neutron Star Magnetic Pole Vortex Line Distortion Parameter Crab Pulsar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruderman, M.,ApJ203,213 (1976).ADSCrossRefGoogle Scholar
  2. Thompson, C. & Duncan, R. C., ApJ473,322 (1996).ADSCrossRefGoogle Scholar
  3. Thompson, C. & Blaes, O.,Phys. Rev. D, 57, 3219 (1998).MathSciNetADSCrossRefGoogle Scholar
  4. Link, B., Franco, L. M.&,Epstein, R. I.,ApJ508, 838–843 (1998).ADSCrossRefGoogle Scholar
  5. Franco, L. M., Link, B., & Epstein, R. I., preprint, astro-ph/9911105 (1999).Google Scholar
  6. Anderson, P. W., & Itoh, N.,Nature256,25 (1975).ADSCrossRefGoogle Scholar
  7. Link, B., Epstein, R. I. & Baym, G.,ApJ390,L21 (1992).ADSCrossRefGoogle Scholar
  8. Link, B. & Epstein, R. L.,ApJ478,L91 (1997).ADSCrossRefGoogle Scholar
  9. Shaham,J., ApJ214,251 (1977).ADSCrossRefGoogle Scholar
  10. Sedrakian, A., Wasserman, I., and Cordes, J. M.,ApJ524,341 (1999).ADSCrossRefGoogle Scholar
  11. Abney, M., Epstein, R. I. & Olinto, A. V.,ApJ466,L91 (1996).ADSCrossRefGoogle Scholar
  12. Mendell, G.,MNRAS296,903 (1998).ADSCrossRefGoogle Scholar
  13. Bondi, H, & Gold, T.,MNRAS115,41 (1955).ADSGoogle Scholar
  14. Alpar, M. A. and Sauls, J. A.,ApJ327,723 (1988).ADSCrossRefGoogle Scholar
  15. Ruderman, M., Zhu, T., and Chen, K.,ApJ492,267 (1998).ADSCrossRefGoogle Scholar
  16. Link, B. & Epstein, R. I.,ApJ457,844 (1996).ADSCrossRefGoogle Scholar
  17. Alpar, M. A., Anderson, P. W., Pines, D.&,Shaham, J., ApJ276, 325 (1984).ADSCrossRefGoogle Scholar
  18. Link, B., Epstein, R. I.&,Baym, G., ApJ,403, 285 (1993)ADSCrossRefGoogle Scholar
  19. Link, B.&,Epstein, R. I., ApJ,373, 592 (1991)ADSCrossRefGoogle Scholar
  20. Link, B., Epstein, R. I., & Lattimer, J. M.,Phys. Rev. Lett.83,3362 (1999).ADSCrossRefGoogle Scholar
  21. Epstein, R. I.&,Baym, G., ApJ,328, 680 (1988).ADSCrossRefGoogle Scholar
  22. Pizzochero, P.M.,Viverit, L.&, Broglia, R. A.,Phys. Rev. Lett.,79, 3347 (1997).ADSCrossRefGoogle Scholar
  23. Jones, P. B.,MNRAS306,327 (1999).ADSCrossRefGoogle Scholar
  24. Negele, J. W. & Vautherin, D., Nuc.PhysA207,298 (1973).ADSGoogle Scholar
  25. DeBlasio, F. V. &Elgaroy, O., Phys. Rev. Lett.82,1815,(1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Richard I. Epstein
    • 1
  • Bennett Link
    • 2
  1. 1.Los Alamos National LaboratoryUSA
  2. 2.Los Alamos National LaboratoryMontana State UniversityUSA

Personalised recommendations