The Dynamo Effect in Stars

  • Axel Brandenburg
Part of the Astrophysics and Space Science Library book series (ASSL, volume 254)


Stars with outer convection zones are all magnetically active. They pos-sess magnetic fields that have a strong large scale component, which can sometimes show cyclic reversals, like in the sun. Over the past thirty years mean-field dynamo theory has been used to explain structure and evolution of those large scale fields. The main ingredients of this theory are the alpha-effect and turbulent diffusion, but the physical nature of these effects has shifted from a purely hydrodynamical origin to more magnetically controlled scenarios, where thermal buoyancy, for example, is replaced by magnetic buoyancy and other magnetically driven instabilities.


dynamos stellar cycles magnetohydrodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balbus, S. A.&Hawley, J. F. 1991, ApJ 376, 214ADSCrossRefGoogle Scholar
  2. Brandenburg, A. 1998, in Theory of Black Hole Accretion Discs, ed. M.A. Abramowicz et al. (Cambridge University Press), p.61Google Scholar
  3. Brandenburg, A. 1999, in Magnetic Helicity, ed. A. A. Pevtsov (Ameri-can Geophysical Union, Florida), (in press)Google Scholar
  4. Brandenburg, A., & Donner, K. J. 1997, MNRAS 288, L29Google Scholar
  5. Brandenburg, A., & Schmitt, D. 1998, A&A 338, L55Google Scholar
  6. Brandenburg, A., Nordlund, A.&Stein, R. F. 1999, A&A (to be submitted)Google Scholar
  7. Brandenburg, A., Saar, S.H., &Turpin, C. R. 1998, ApJ (Letters) 498, L51ADSCrossRefGoogle Scholar
  8. Brandenburg, A., Nordlund, A., Stein, R. F.&Torkelsson, U. 1995, ApJ 446, 741ADSCrossRefGoogle Scholar
  9. Brandenburg, A., Jennings, R. L., Nordlund, A., Rieutord, M., Stein, R. F., & Tuominen, I. 1996, J. Fluid Mech. 306, 325Google Scholar
  10. Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A 303, L29ADSGoogle Scholar
  11. Dikpati, M. & Charbonneau, P. 1999, ApJ 518, 508ADSCrossRefGoogle Scholar
  12. Durney, B.R. 1996, Solar Physics 166, 2318Google Scholar
  13. Frisch, U., Pouquet, A., Léorat, J., Mazure, A. 1975, J. Fluid Mech. 68, 769Google Scholar
  14. Gilman, P. A. 1983, ApJ Suppl. 53, 243Google Scholar
  15. Glatzmaier, G. A. 1985, ApJ 291, 300Google Scholar
  16. Krause, F., & Rädler, K.-H. 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory (Akademie-Verlag, Berlin; also Pergamon Press, Oxford)Google Scholar
  17. Meneguzzi, M., Pouquet, A. 1989, J. Fluid Mech. 205, 297Google Scholar
  18. Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge)Google Scholar
  19. Moss D., Shukurov A., Sokoloff D. 1999, A&A 343, 120Google Scholar
  20. Nordlund, A., Brandenburg, A., Jennings, R. L., Rieutord, M., Ruokolainen, J., Stein, R. F.&Tuominen, I. 1992, ApJ 392, 647ADSCrossRefGoogle Scholar
  21. Parker, E. N. 1979, Cosmical Magnetic Fields (Clarendon Press, Oxford) Parker, E. N. 1987, Solar Phys. 110, 11ADSCrossRefGoogle Scholar
  22. Pouquet, A., Frisch, U., Léorat, J. 1976, J. Fluid Mech. 77, 321 Rädler, K.-H. 1986, Astr. Nachr. 307, 89CrossRefGoogle Scholar
  23. Schmitt, D. 1985, Dynamowirkung magnetostrophischer Wellen (PhD thesis, University of Göttingen)Google Scholar
  24. Vishniac, E. T.&Brandenburg, A. 1997, ApJ 475, 263ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Axel Brandenburg
    • 1
  1. 1.NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark; and Department of MathematicsUniversity of Newcastle upon TyneUK

Personalised recommendations