Studies of the developing visual system of mammals have shown that at birth the visual cortex is to a large extent wired up and ready to be operated on by experience. If animals are deprived of early visual experience, dramatic changes in the structure of their visual cortex will occur. There is a critical period early in life in which both innate neural wiring and visual experience must interact in order to ensure proper development of the visual system. Throughout life, experience continues to modulate the fine pattern of cortical connections, allowing us to acquire new skills and knowledge (Wiesel 1994).


Visual Cortex Receptive Field Perceptual Learn Primary Visual Cortex Motion Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahissar, M., & S. Hochstein (1993). Attentional control of early perceptual learning. Proceedings of the National Academy of Sciences, USA 90 5718–5722.CrossRefGoogle Scholar
  2. Ball, K.K., & R. Sekuler (1982). A specific and enduring improvement in visual motion discrimination. Science 218 697–698.CrossRefGoogle Scholar
  3. Ball, K.K., & R. Sekuler (1987). Direction-specific improvement in motion discrimination. Vision Research 27 953–965.CrossRefGoogle Scholar
  4. Beard, B.L., D.M. Levi, & L.N. Reich (1995). Perceptual learning in parafoveal vision: Physiological and cognitive contributions. Vision Research 35 (12, June), 1679–1690.CrossRefGoogle Scholar
  5. Bennett, R.G., & G. Westheimer (1991). The effect of training on visual alignment discrimination and grating resolution. Perception & Psychophysics 49 541 – 546.CrossRefGoogle Scholar
  6. Berardi, N., & A. Fiorentini (1987). Interhemispheric transfer of visual information in humans: spatial characteristics. Journal of Physiology (London) 348 633–647.Google Scholar
  7. Braitenberg, V. (1984). Vehicles. Cambridge, MA: MIT Press.Google Scholar
  8. Coutant, B. (1993). Training improvements in human stereoscopic vision. Ph. D. Thesis. Berkely, CA: University of California at Berkeley.Google Scholar
  9. de Lucca, E., & M. Fahle (1994). Direction- and eye-specificity during learning of spatiotemporal interpolation. In N. Eisner, H. Breer, & H. Thieme (eds.), Proceedings of the 22th Goettingen Neurobiology Conference (p. 281). Stuttgart, Germany.Google Scholar
  10. Fahle, M., & S. Edelman (1993). Long-term learning in vernier acuity: Effects of stimulus orientation, range and of feedback. Vision Research 33 391–412.CrossRefGoogle Scholar
  11. Fiorentini, A., & N. Berardi (1980). Perceptual learning specific for orientation and spatial frequency. Nature 287 43–44.CrossRefGoogle Scholar
  12. Fiorentini, A., & N. Berardi (1981). Learning in gratin waveform discrimination: Specificity for orientation and spatial frequency. Vision Research 21 1149 – 1158.CrossRefGoogle Scholar
  13. Gilbert, C.D., & T.N. Wiesel (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience 9 2432–2442.Google Scholar
  14. Gilbert, C.D., & T.N. Wiesel (1992). Receptive field dynamics in adult primary visual cortex. Nature 356 150–152.CrossRefGoogle Scholar
  15. Hubel, D.H., & T.N. Wiesel (1962). Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology 160 106–154.Google Scholar
  16. Hubel, D.H., & T.N. Wiesel (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28 1041–1059.Google Scholar
  17. Hubel, D.H., & T.N. Wiesel (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195 215–243.Google Scholar
  18. Hubel, D.H., & T.N. Wiesel (1977). The Ferrier lecture. Proceedings of the Royal Society B 198 1–59.CrossRefGoogle Scholar
  19. James, W. (1952). Principles of psychology. London: Encyclopedia Britannica Inc.Google Scholar
  20. Kapadia, M., C.D. Gilbert, & G. Westheimer (1994). A quantitative measure for shortterm cortical plasticity in human vision. Journal of Neuroscience 14 451–457.Google Scholar
  21. Kaplan, E., B.B. Lee, & R.M. Shapley (1990). New views of primate retinal function. Progress in Retinal Research 9 273–336.CrossRefGoogle Scholar
  22. Kami, A., & D. Sagi (1991). Where practice makes perfect in texture discrimin-stion: evidence for primary visual cortex plasticity. Proceedings of the National Academy of Science, USA, 88 4966–4970.CrossRefGoogle Scholar
  23. Kersten, D., & S. Madarasmi (1995). The visual perception of surfaces, their properties, and relationships. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 19 373–389.Google Scholar
  24. Kumar, T., & D. Glaser (1993). Initial performance, learning,, and observer variability for hyperacuity tasks. Vision Research 33 2287–2300.CrossRefGoogle Scholar
  25. Livingstone, M.L., & D.H. Hubel (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4 339–356.Google Scholar
  26. Masland, R.H. (1969). Visual motion perception: experimental modification. Science 165 819–821.CrossRefGoogle Scholar
  27. McKee, S.R., & G. Westheimer (1978). Improvement in vernier acuity with practice. Perception & Psychophysics 24 258–262.CrossRefGoogle Scholar
  28. Nakayama, K., & S. Shimojo (1990). Toward a neural understanding of visual surface representation. Cold Spring Harbour Symposia on Quantitative Biology 60, 911–924.CrossRefGoogle Scholar
  29. Pettet, M.W., & C.D. Gilbert (1992). Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Sciences, USA, 89(17), 8366–8370.CrossRefGoogle Scholar
  30. Poggio, T., & F. Girosi (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science 247 978–982.MathSciNetCrossRefMATHGoogle Scholar
  31. Poggio, T., M. Fahle, & S. Edelman (1992). Fast perceptual learning in visual hyperacuity. Science 256 1018–1021.CrossRefGoogle Scholar
  32. Ramachandran, V.S., & O. Braddick (1973). Orientation specific learning in stere-opsis. Perception 2 371–376.CrossRefGoogle Scholar
  33. Rapf, D., & C. Wehrhahn (1993). From temporal order to motion perception through repeated presentation: improvement in performance is specifically manifested by ON-pathway stimulation. Perception 22 (Supplement), 92c.Google Scholar
  34. Rapf, D., & C. Wehrhahn (1994). “Learners” and “Non-learners” in motion perception. Investigations Ophtalmology and Visual Science 35 (4), 1273.Google Scholar
  35. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65 386–408.MathSciNetCrossRefGoogle Scholar
  36. Tully, T. (1998). Toward a molecular biology of memory: The light’s coming on! Nature Neuroscience 1(7, November), 543–545.CrossRefGoogle Scholar
  37. Vaina, L.M., V. Sundareswaran, & J.G. Harris (1995). Learning to ignore: Psy-chophysics and computational modeling of fast learning of direction in noisy motion stimuli. Cognitive Brain Research 2 (3, July), 155–163.CrossRefGoogle Scholar
  38. von der Malsburg, C. (1985). Nervous structures with dynamical links. Berichte der Bunsen Gesellschaft für Physikalische Chemie 89 703–710.CrossRefGoogle Scholar
  39. Wehrhahn, C. (1980) Visual fixation and tracking in flies. In L.A. Segel (ed.), Mathematical models in molecular and cell biology (pp. 568–605). Cambridge, UK: Cambridge University Press.Google Scholar
  40. Wehrhahn, C. (1985). Visual guidance of flies during flight. In G.A. Kerkut & L.I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology. Vol 6. Nervous system: sensory (pp. 673–684). Oxford: Pergamon Press.Google Scholar
  41. Wehrhahn, C., & D. Rapf (1992). ON- and OFF-pathways form separate neural substrates for motion perception: psychophysical evidence. Journal of Neuroscience 12 2247–2250.Google Scholar
  42. Westheimer, G. (1994. The Ferrier lecture. Seeing depth with two eyes. Proceedings of the Royal Society London B 257 (1349) 205–214.CrossRefGoogle Scholar
  43. Westheimer, G., & T.T. Truong (1988). Target crowding in foveal and peripheral hyperacuity. American Journal of Optometry and Physiological Optics 65 395–399.CrossRefGoogle Scholar
  44. Wiesel, T.N. (1994). Genetics and behaviour. Editorial, Science 264 1647.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Christian Wehrhahn
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations