Advertisement

Abstract

Prerational intelligence is a new theme tackled by a year-long work of a research group at the Center for Interdisciplinary Research. It assumes that there is something like rational intelligence. While examples related to prerational intelligence include most striking yet simple neuronal mechanisms that give rise to astoundingly complex behavior — such as the functioning of the digestive system of a lobster — some behaviors related to human intelligence seem of a distinct quality.

Keywords

Intelligent Agent Knowledge Element Intelligent Behavior Symbolic Description Natural Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M. , E. Durfee, M. Huhns, W. Punch, & E. Simoudis (1992). AAAI Workshop on Cooperation Among Heterogeneous Intelligent Agents. AI Magazine, Vol 13 (2), 39–42.Google Scholar
  2. Brachman, R. J. (1979). On the epistemological status of semantic networks. In N. V. Findler (ed. ), Associative networks: Representation and use of knowledge by computers (pp. 3–50). New York: Academic Press.Google Scholar
  3. Brewka, G. (1993). Nichtmonotones Schließen. In G. Görz (ed. ), Einführung in die künstliche Intelligenz (pp. 55–85). Bonn: Addison-Wesley.Google Scholar
  4. Brooks, R. A. (1991). Intelligence without reason. Proceedings of the 12th Interna- tionalJoint Conference on Artificial Intelligence, 1991 (pp. 569–595). Sydney, Australia.Google Scholar
  5. Bruner, J. S. , J. J. Goodnow, & G. A. Austin (1956). A study of thinking. New York: Wiley.Google Scholar
  6. Charniak, E. , & D. McDermott (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.zbMATHGoogle Scholar
  7. Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.Google Scholar
  8. Feigenbaum, E. A. , & J. Feldman (1963). Computers and thought. New York: McGraw-Hill.zbMATHGoogle Scholar
  9. Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  10. Garfield, J. L. (ed. ), (1987). Modularity in knowledge representation and natural language understanding. Cambridge, MA: MIT Press.Google Scholar
  11. Konolige, K. (1983). A deductive model of belief. Proceedings of the Eighth International Joint Conference on Artificial Intelligence (pp. 377–381). Karlsruhe.Google Scholar
  12. McCarthy, J. , & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In D. Michie & B. Meltzer (eds. ), Machine intelligence 4 (pp. 463–502). Edinburgh: Edinburgh University Press.Google Scholar
  13. McCorduck, P. (1979). Machines who think. San Francisco: Freeman.Google Scholar
  14. Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.Google Scholar
  15. Minsky, M. L. , & S. Papert (1972). MIT AI memo 252.Google Scholar
  16. Müller, J. (ed.), (1993). Verteilte künstliche Intelligenz — Methoden und Anwendungen. Mannheim: BI Wissenschaftsverlag.zbMATHGoogle Scholar
  17. Müller, J. , & J. Siekmann (1991). Structured social agents. In W. Brauer & D. Hernandez (eds. ), Verteilte künstliche Intelligenz und kooperatives Arbeiten (pp. 42–52). 4. Internationaler GI-Kongress Wissensbasierte Systeme. Heidelberg: Springer.CrossRefGoogle Scholar
  18. Neisser, U. (1967). Cognitive psychology. New York: Appleton — Century — Crofts.Google Scholar
  19. Newell, A. (1981). The knowledge Level. AI Magazine 2(2), 1–20. Republished 1982 m Artificial Intelligence 18(1), 1–20.MathSciNetGoogle Scholar
  20. Newell, A. , J. C. Shaw, & H. A. Simon (1957 [1963]). Empirical explorations with the Logic Theory Machine. Proceedings of the Western Joint Computer Conference 15 (pp. 218–239). Reprinted in Feigenbaum & Feldman.Google Scholar
  21. Newell, A. , J. C. Shaw, & H. A. Simon (1958 [1963]). Chess playing programs and the problem of complexity. IBM Journal of Research and Development 2(4), 320–335. Reprinted in Feigenbaum & Feldman.MathSciNetCrossRefGoogle Scholar
  22. Newell, A. , & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  23. Shannon, C. E. , & J. McCarthy (1956). Automata studies. Princeton, NJ: Princeton University Press (Annals of Mathematics Studies No. 34).zbMATHGoogle Scholar
  24. Winston, P. H. (1992). Artificial intelligence (3rd edition). Reading, MA: Addison-Wesley.Google Scholar
  25. Wachsmuth, I. (1989). Zur intelligenten Organisation von Wissensbeständen in künstlichen Systemen. Stuttgart / Heidelberg: IBM Deutschland, Wissenschaftliches Zentrum (IWBS Report 91).Google Scholar
  26. Wachsmuth, I. , & B. Gängler (1991). Knowledge packets and knowledge packet structures. In O. Herzog & C. -R. Rollinger (eds. ), Text understanding in LILOG: integrating computational linguistics and artificial intelligence (pp. 380–393). Berlin Heidelberg: Springer (LNAI 546).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Ipke Wachsmuth
    • 1
  1. 1.Universität BielefeldGermany

Personalised recommendations