Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

  • 589 Accesses

Abstract

Fast and coordinated arm movements should be executed under feedforward control since biological feedback loops, in particular those via the periphery, are slow and have small gains. Recent estimates show dynamic stiffness is low during movement (Bennett et al. 1992; Bennett 1993; Gomi & Kawato 1996). Thus, internal, neural models such as an inverse dynamics model are necessary (Kawato et al. 1993; Katayama & Kawato 1993). Analysis of the activity of single Purkinje cells suggests the existence of an inverse dynamics model in the cerebellum (Shidara et al. 1993). Trajectories of point-to-point arm movements using multi-joints are characterized by roughly straight hand paths and bell-shaped speed profiles (Morasso 1981). Kinematic and dynamic optimization principles have been proposed to account for these invariant features so far (Flash & Hogan 1985; Uno et al. 1989; Kawato 1992; Kawato 1996). Experimental data support the dynamic optimization theory, which requires both forward and inverse models of the motor apparatus and the external world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboaf, E. W. , C. G. Atkeson, & D. J. Reinkensmeyer (1988). Task-level robot learning. Proceedings, IEEE International Conference on Robotics and Automation (April 24–29), Vol. 2 (pp. 1309–1310). Philadelphia, PA: IEEE.

    Google Scholar 

  • Bennett, D. J. (1993). Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements. Experimental Brain Research 95:488–498.

    Google Scholar 

  • Bennett, D. J. , J. M. Hollerbach, Y. Xu, & I. W. Hunter (1992). Time-varying stiffness of human elbow joint during cyclic voluntary movement. Experimental Brain Research 88:433–442.

    Article  Google Scholar 

  • Flash, T. (1987). The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics 57:257–274.

    Article  MATH  Google Scholar 

  • Flash, T., & N. Hogan (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience 5:1688–1703.

    Google Scholar 

  • Gomi, H. , & M. Kawato (1996). Equilibrium-point control hypothesis examined by measured arm-stiffness during multi-joint movement. Science 272:117–120.

    Article  Google Scholar 

  • Gomi, H. , M. Shidara, A. Takemura, Y. Inoue, K. Kawano, & M. Kawato (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral parafloccu-lus during ocular following responses in monkeys. I. simple spikes. Journal of Neurophysiology 80:818–831.

    Google Scholar 

  • Hayakawa, H. , S. Nishida, Y. Wada, & M. Kawato (1994). A computational model for shape estimation by integration of shading and edge information. Neural Networks 7:1193–1210.

    Article  Google Scholar 

  • Katayama, M. , & M. Kawato (1993). Virtual trajectory and stiffness ellipse during multi-joint arm movement predicted by neural inverse models. Biological Cybernetics 69:353–362.

    MATH  Google Scholar 

  • Kawato, M. (1989). Motor theory of speech perception revisited from minimum-torque-change neural network model. Proceedings of 8th Symposium on Future Electron Devices (pp. 141–150). Tokyo, Japan.

    Google Scholar 

  • Kawato, M. (1992). Optimization and learning in neural networks for formation and control of coordinated movement. In D. Meyer & S. Kornblum (eds. ),Attention and performance, XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience — A silver jubilee (pp. 821–849). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kawato, M. (1996). Trajectory formation in arm movements: minimization principles and procedures. In H. N. Zelaznik (ed. ),Advances in motor learning and control (pp. 225–259). Champaign, ILL: Human Kinetics Publishers.

    Google Scholar 

  • Kawato, M. , & H. Gomi (1992). The cerebellum and VOR/OKR learning models. Trends in Neurosciences 15:445–453.

    Article  Google Scholar 

  • Kawato, M. , K. Furukawa, & R. Suzuki (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics 57:169–185.

    Article  MATH  Google Scholar 

  • Kawato, M. , R. Gandolfo, H. Gomi, & Y. Wada (1994). Teaching by showing in Kendama based on optimization principle. In M. Marinaro & P. G. Morasso (eds. ),Proceedings of the International Conference on Artificial Neural Networks (May 26–29), (pp. 601–606). Sorrento, Italy.

    Google Scholar 

  • Kawato, M. , H. Gomi, M. Katayama, & Y. Koike (1993). Supervised learning for coordinative motor control. In E. B. Baum (ed. ),Computational learning & cognition, SIAM Frontier Series (pp. 126–161). Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Kawato, M. , H. Hayakawa, & T. Inui (1993). A forward-inverse optics model of reciprocal connections between visual areas. Network: Computation in Neural systems 4:415–422.

    Article  MATH  Google Scholar 

  • Kawato, M. , Y. Maeda, Y. Uno, & R. Suzuki (1990). Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biological Cybernetics 62:275–288.

    Article  Google Scholar 

  • Kobayashi, Y., K. Kawano, A. Takemura, Y. Inoue, T. Kitama, H. Gomi, & M. Kawato (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral parafloc-culus during ocular following responses in monkeys. II. Complex spikes. Journal of Neurophysiology 80:832–848.

    Google Scholar 

  • Kobayashi, Y., K. Kawano, A. Takemura, Y. Inoue, T. Kitama, H. Gomi, & M. Kawato (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral parafloc-culus during ocular following responses in monkeys. II. Complex spikes. Journal of Neurophysiology 80:832–848.

    Google Scholar 

  • Liberman, A. M. , & I. G. Mattingly (1985). The motor theory of speech perception revised. Cognition 21:1–36.

    Article  Google Scholar 

  • Miyamoto, H. , S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu, E. Nakano, Y. Wada, & M. Kawato (1996). A Kendama learning robot based on bi-directional theory. Neural Networks 9:1281–1302.

    Article  Google Scholar 

  • Miyamoto, H. , & M. Kawato (1998). A tennis serve and upswing learning robot based on bi-directions theory. Neural Networks 11:1331–1344.

    Article  Google Scholar 

  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research 42:223–227.

    Article  Google Scholar 

  • Schaal, S. , C.G. Atkeson, & S. Botros (1992). What should be learned? Proceedings of Seventh Yale Workshop on Adaptive and Learning Systems (pp. 199–204). New Haven, Connecticut.

    Google Scholar 

  • Shidara, M. , K. Kawano, H. Gomi, & M. Kawato (1993). Inverse-dynamics encoding of eye movement by Purkinje cells in the cerebellum. Nature 365:50–52.

    Article  Google Scholar 

  • Uno, Y., M. Kawato, & R. Suzuki (1989). Formation and control of optimal trajectory in human multijoint arm movement — minimum torque-change model. Biological Cybernetics 61:89–101.

    Article  Google Scholar 

  • Wada, Y., & M. Kawato (1993). A neural network model for arm trajectory formation using forward and inverse dynamics models. Neural Networks 6:919–932.

    Article  Google Scholar 

  • Wada, Y., & M. Kawato (1995). A theory for cursive handwriting based on the minimization principle. Biological Cybernetics 73:3–13.

    Article  MATH  Google Scholar 

  • Wada, Y., Y. Koike, E. V-Bateson, & M. Kawato (1995). A computational theory for movement pattern recognition based on optimal movement pattern generation. Biological Cybernetics 73:15–25.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kawato, M. (2000). A Bi-Directional Theory Approach to Prerational Intelligence. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics