Advertisement

Abstract

Schema Theory was developed by Arbib (Arbib 1981, 1992, 1993; Arbib & Buhmann 1992) to represent systems in both Artificial Intelligence and Brain Theory.1 This paper presents an overview of Arbib’s Schema Theory and its applications. It delves into more detail on one specific application of schema theory called Robot Schemas.

Keywords

Schema Theory Composition Operator Environment Model Robot System Motor Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (ed.), Handbook of physiology — The nervous system II Motor control (pp. 1449–1480). Bethesda, MD: American Physiological Society.Google Scholar
  2. Arbib, M. A. (1992). Schema theory. In S. C. Shapiro (ed.), Encyclopedia of artificial intelligence (2nd Edition) (1427–1443). New York: Wiley-Interscience. (Also USC Center for Neural Engineering TR-91–03.)Google Scholar
  3. Arbib, M. A. (1993). Book review: Allen Newell’s Unified Theory of Cognition. Artificial Intelligence 59:265–283.CrossRefGoogle Scholar
  4. Arbib, M. A., & J. Buhmann (1992). Neural networks. In S. C, Shapiro (ed.), Encyclopedia of artificial intelligence (2nd Edition) (pp. 1017–1060). New York: Wiley-Interscience. (Also USC Center for Neural Engineering TR-91–02. )Google Scholar
  5. Arbib, M. A. , E. J. Conklin, & J. C. Hill (1987). From schema theory to language. Oxford, UK: Oxford University Press.Google Scholar
  6. Arbib, M. A. , & D. H. House (1987). Depth and detours: An essay on visually-guided behavior. In M. A. Arbib & A. R. Hanson (eds.), Vision, brain and cooperative computation (pp. 129–163). Cambridge, MA: MIT Press.Google Scholar
  7. Arbib, M. A. , T. Iberall, & D. Lyons. (1987). Schemas that integrate vision and touch for hand control. In M. A. Arbib & A. R. Hanson (eds.), Vision, brain and cooperative computation (pp. 489–510). Cambridge MA: MIT Press.Google Scholar
  8. Arkin, R. C. (1989). Motor schema-based mobile robot navigation. Internationl Journal of Robotic Research 8(4):92–112.CrossRefGoogle Scholar
  9. Center for Neural Engineering (1993, October 19–20). Workshop on Neural Architectures and Distributed AI: From schema assemblages to neural networks. Los Angeles, CA: University of Southern CaliforniaGoogle Scholar
  10. Chapman, D. (1992). Vision, instruction, and action. Cambridge, MA: MIT Press.Google Scholar
  11. Draper, R. , B. Collins, J. Brolio, A. Hanson, & E. Riseman (1989). The schema system. Internationaljournal of Computer Vision 2:209–250.CrossRefGoogle Scholar
  12. Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence 24:85–168.CrossRefGoogle Scholar
  13. Hoare, C. A. R. (1985). Communicating sequential processes. International Series in Computer Science. New Jersey: Prentice-Hall.Google Scholar
  14. Horswill, I. (1995). Analysis of adaptation and environment. Artificial Intelligence 73:1–2 (Feb. 1995), 1–30.CrossRefGoogle Scholar
  15. Lyons, D. M. (1990, May 21–23). A formal model for reactive robot plans. 2nd International Conference on Computer Integrated Manufacturing, RPI (pp. 418–4231. Troy, NY.Google Scholar
  16. Lyons, D. M. (1993, June). Representing and analysing action plans as networks of concurrent processes. IEEE Transactions on Robotics and Automation 9(3):241–256.CrossRefGoogle Scholar
  17. Lyons, D. M. , & M. A. Arbib (1989, June). A formal model of computation for sensory-based robotics. IEEE Transactions on Robotics and Automation 5(3):280–293.CrossRefGoogle Scholar
  18. Lyons, D. M. , & A. J. Hendriks (1992, April 7–12). Planning for reactive robot behavior. IEEE Conference on Robotics and Automation, 2675–2680. (See also video proceedings. )Google Scholar
  19. Lyons, D. M., & A. J. Hendriks (1995). Exploiting patterns of interaction to achieve reactive behavior. Artificial Intelligence 73:1–2 (Febr. 1995), 117–148. (Also Philips Technical Note TN-93–052. )CrossRefGoogle Scholar
  20. Pelavin, R. (1988). A formal approach to planning with concurrent actions and external events. PhD thesis. Rochester, NY: University of Rochester, Department of Computer Science.Google Scholar
  21. Steenstrup, M. , M. A. Arbib, & E. G. Manes (1983). Port automata and the algebra of concurrent processes. Journal of Computer and System Sciences 27(1):29–50.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Damian M. Lyons
    • 1
  1. 1.Philips ResearchBriarcliff ManorUSA

Personalised recommendations