Advertisement

Abstract

In previous work (Webb 1993, 1994) I have reported on the use of a robot to model an insect sensory-motor system (phonotaxis in the cricket). As a means of generating and testing hypotheses about neural mechanisms, an important advantage of this approach over simulation is that the robot must physically interact with a real sound field, so the posed problems realistically represent those solved by the cricket. Another advantage is that taking a robotic approach (how can I get a machine to behave like the cricket?) to a specific, well-explored biological problem (what are the known characteristics and underlying systems for this behaviour?) can draw on the strengths of both fields in attempting to understand how sensory-motor systems work.

Keywords

Mobile Robot Sound Source Obstacle Avoidance Escape Response Robotic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M.A. (1987). Levels of modeling of mechanisms of visually guided behaviour. Behavioral and Brain Sciences 10, 407–465.CrossRefGoogle Scholar
  2. Arbib, M.A. (1992). Anuran visuomotor coordination for detour behavior: From retina to motor schemas. In J.A. Meyer, H.L. Roitblat, & S.W. Wilson (eds.), From Animals to Animats: Proceedings of the Second International Conference on the Simulation of Adaptive Behaviour (pp. 42–51). Cambridge, MA: MIT Press.Google Scholar
  3. Arkin, R.C. (1989). Motor schema-based mobile robot navigation. International Journal of Robotics Research 8, 92–112.MathSciNetCrossRefGoogle Scholar
  4. Arkin, R.C. (1991). Integrating behavioural, perceptual, and world knowledge in reactive navigation. In R Maes (ed.), Designing autonomous agents (pp. 105–122). Cambridge, MA: MIT Press.Google Scholar
  5. Arkin, R.C. (1993). Modeling neural function at the schema level: Implications and results for robotic control. In R. Beer, R.E. Ritzmann, & T.M. McKenna (eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 383–410). Boston, MA: Academic Press.Google Scholar
  6. Baerends, G.P. (1970). A model of the functional organisation of incubation behaviour in the herring gull. Behaviour Supplement 17, 261–312.Google Scholar
  7. Beckers, R., O. Holland, & J.-L. Deneubourg (1994) Object gathering by a group of collective robots. In Proceedings of A Life IV (pp. 181–189). Cambridge, MA: MIT Press.Google Scholar
  8. Beer, R.D. (1990). Intelligence as adaptive behaviour. San Diego, CA: Academic Press.Google Scholar
  9. Beer, R.D., & J.C. Gallagher (1991). Evolving dynamical neural networks for adaptive behaviour. Journal of Adaptive Behaviour 1, 92–122.Google Scholar
  10. Brooks, R.A. (1986). Achieving artificial intelligence through building robots. A.I. Memo 899. Cambridge, MA: MIT Press.Google Scholar
  11. Brooks, R.A. (1991). Elephants don’t play chess. In P. Maes (ed.), Designing autonomous agents (pp. 3–15). Cambridge, MA: MIT Press.Google Scholar
  12. Brooks, R.A. (1991). Challenges for complete creature architectures. In J.-A. Meyer, H.L. Roitblat, & S.W. Wilson (eds.), From Animals to Animats2 (pp. 434–443). Cambridge, MA: MIT Press.Google Scholar
  13. Brooks, R.A. (1992). Artificial life and real robots. Proceedings of the First European Conference on Artificial Life (pp. 3–10). Cambridge, MA: MIT Press.Google Scholar
  14. Cliff, D.T., P. Husbands, & I. Harvey (1992). Evolving visually guided robots. Cognitive Science Research Paper 220. Brighton, UK: University of Sussex.Google Scholar
  15. Cruse, H. (1991). Coordination of leg movement in walking animals. In J.-A. Meyer & S.W. Wilson (eds.), From Animals to Animats (pp. 105–119). Cambridge, MA: MIT Press.Google Scholar
  16. Fernald, R.D. (1984) Neuroethology according to Hoyle. Behavioural and Brain Sciences 7, 388.CrossRefGoogle Scholar
  17. Franceschini, N., A. Riehle, & A. LeNestour (1989). Directionally selective motion detection by insect neurons. In D.G. Stavenga & R.C. Hardie (eds.), Facets of vision (360–390). Berlin: Springer Verlag.CrossRefGoogle Scholar
  18. Franceschini, N., J.-M. Pichon, & C. Blanes (1991). Real time visuomotor control: From flies to robots. Proccedings of IEEE Fifth International Conference on Advanced Robotics (pp. 931–935). Pisa, Italy.Google Scholar
  19. Hansell, M.H. (1984) Animal architecture and building behaviour. London: Longman.Google Scholar
  20. Horswill, I.D., & R. Brooks (1988). Situated vision in a dynamic world: Chasing objects. Proceedings of AAAI-88, 796–800. Cambridge, MA: MIT Press.Google Scholar
  21. Hoy, R. (1993). Neuroethology of acoustic startle and escape in insects. In R. Beer, R.E. Ritzmann, & T.M. McKenna (eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 39–158). Boston, MA: Academic Press.Google Scholar
  22. Huber, F., & J. Thorson (1985). Cricket auditory communication. Scientific American 253 (6), 47–54.CrossRefGoogle Scholar
  23. Huntingford, F. (1984). The study of animal behaviour. London: Chapman and Hall.CrossRefGoogle Scholar
  24. Kreigman, D.J., E. Triedl, & T.O. Binford (1987). A mobile robot: Sensing, planning and locomotion. Proccedings of IEEE International Conference on Robotics and Automation (pp. 402–408). Washington, DC.Google Scholar
  25. Lewis, D.B., & D.M. Gower (1980). Biology of communication. Glasgow: Blackie and Son.Google Scholar
  26. Maes, P. (1991). A bottom up mechanism for behaviour selection in an artificial creature. In J.-A. Meyer & S.W. Wilson (eds.), From Animals to Animats (pp. 238–246). Cambridge: MIT Press.Google Scholar
  27. Malcolm, C. (1990). Behavioural modules in robotic assembly. Unpublished manuscript. Department of AI, University of Edinburgh.Google Scholar
  28. Mataric, M. (1990). A distributed model for mobile robot environment learning and navigation. A.I. Memo 1228. Cambridge, MA: MITGoogle Scholar
  29. McFarland, D., & T. Bösser (1993) Intelligent behaviour in animals and robots. Cambridge, MA: MIT Press.Google Scholar
  30. Meyer, J.A., & A. Guillot (1991). Simulation of adaptive behaviour in animats: Review and prospect. In J.-A. Meyer & S.W. Wilson (eds.), From Animals to Animats (pp. 2–14). Cambridge, MA: MIT Press.Google Scholar
  31. Moravec, H.P. (1983). The Stanford Cart and the CMU Rover. Proceedings of the IEEE 71, 872–884.CrossRefGoogle Scholar
  32. Nehmzow, U. (1993) Compass-based robot navigation. Unpublished manuscript.Google Scholar
  33. Pebody, M. (1991) How to make a Lego robot do the right thing. M.Sc. Thesis. Edinburgh: University of Edinburgh.Google Scholar
  34. Pfeifer, R. (1993) Cheap designs: Exploiting the dynamics of the system-environment interaction. Proceedings of the Conference on Prerational Intelligence: Phenomenology of Complexity Emerging in Systems of Agents Interacting Using Simple Rules 2, 81–91. Bielefeld, Germany: Zentrum für interdisziplinäre Forschung (ZiF) der Universität Bielefeld.Google Scholar
  35. Raibert, M.H. (1989). Dynamically stable legged locomotion. Artificial Intelligence — Technical Report 1179. Cambridge, MA: MIT.Google Scholar
  36. Ritzmann, R.E. (1993). The neural organisation of cokroach escape and its rôle in context depending orientation. In R. Beer, R.E. Ritzmann, & T.M. McKenna (eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 113–138). Boston, MA: Academic Press.Google Scholar
  37. Schildberger, K. (1988). Behavioural and neuronal methods of cricket phonotaxis. Experientia 44, 408–415.CrossRefGoogle Scholar
  38. Tinbergen, N. (1951). The study of instinct. Oxford: Clarendon Press.Google Scholar
  39. Webb, B. (1993). Perception in real and artificial insects. PhD. Thesis. Edinburgh: University of Edinburgh.Google Scholar
  40. Webb, B. (1994). A robotic model of cricket phonotaxis. In D. Cliff, P. Husbands, J.-A. Meyer, & S.W. Wilson (eds.), From Animals to Animats 3 (pp.45–54). Cambridge, MA: MIT Press.Google Scholar
  41. Weber, T., & J. Thorson (1988).Auditory behaviour in the cricket. II Interaction of the direction of tracking with perceived temporal pattern in split song paradigms. Journal of Comparative Physiology A 163, 13–22.CrossRefGoogle Scholar
  42. Wehner, R. (1987). Matched filters — Neural models of the external world. Journal of Comparative Physiology A 161, 511–531.CrossRefGoogle Scholar
  43. Zacharuk, R.Y. (1985). Antennae and sensilla. In G.A. Kerkut & L.I. Gilbert (eds.), Comprehensive insect physiology. Biochemistry and Pharmacology. vol 6. (pp. 1–69). Oxford, UK: Pergamon.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Barbara Webb
    • 1
  1. 1.University of StirlingScotland, UK

Personalised recommendations