Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

  • 588 Accesses

Abstract

In previous work (Webb 1993, 1994) I have reported on the use of a robot to model an insect sensory-motor system (phonotaxis in the cricket). As a means of generating and testing hypotheses about neural mechanisms, an important advantage of this approach over simulation is that the robot must physically interact with a real sound field, so the posed problems realistically represent those solved by the cricket. Another advantage is that taking a robotic approach (how can I get a machine to behave like the cricket?) to a specific, well-explored biological problem (what are the known characteristics and underlying systems for this behaviour?) can draw on the strengths of both fields in attempting to understand how sensory-motor systems work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbib, M.A. (1987). Levels of modeling of mechanisms of visually guided behaviour. Behavioral and Brain Sciences 10, 407–465.

    Article  Google Scholar 

  • Arbib, M.A. (1992). Anuran visuomotor coordination for detour behavior: From retina to motor schemas. In J.A. Meyer, H.L. Roitblat, & S.W. Wilson (eds.), From Animals to Animats: Proceedings of the Second International Conference on the Simulation of Adaptive Behaviour (pp. 42–51). Cambridge, MA: MIT Press.

    Google Scholar 

  • Arkin, R.C. (1989). Motor schema-based mobile robot navigation. International Journal of Robotics Research 8, 92–112.

    Article  MathSciNet  Google Scholar 

  • Arkin, R.C. (1991). Integrating behavioural, perceptual, and world knowledge in reactive navigation. In R Maes (ed.), Designing autonomous agents (pp. 105–122). Cambridge, MA: MIT Press.

    Google Scholar 

  • Arkin, R.C. (1993). Modeling neural function at the schema level: Implications and results for robotic control. In R. Beer, R.E. Ritzmann, & T.M. McKenna (eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 383–410). Boston, MA: Academic Press.

    Google Scholar 

  • Baerends, G.P. (1970). A model of the functional organisation of incubation behaviour in the herring gull. Behaviour Supplement 17, 261–312.

    Google Scholar 

  • Beckers, R., O. Holland, & J.-L. Deneubourg (1994) Object gathering by a group of collective robots. In Proceedings of A Life IV (pp. 181–189). Cambridge, MA: MIT Press.

    Google Scholar 

  • Beer, R.D. (1990). Intelligence as adaptive behaviour. San Diego, CA: Academic Press.

    Google Scholar 

  • Beer, R.D., & J.C. Gallagher (1991). Evolving dynamical neural networks for adaptive behaviour. Journal of Adaptive Behaviour 1, 92–122.

    Google Scholar 

  • Brooks, R.A. (1986). Achieving artificial intelligence through building robots. A.I. Memo 899. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brooks, R.A. (1991). Elephants don’t play chess. In P. Maes (ed.), Designing autonomous agents (pp. 3–15). Cambridge, MA: MIT Press.

    Google Scholar 

  • Brooks, R.A. (1991). Challenges for complete creature architectures. In J.-A. Meyer, H.L. Roitblat, & S.W. Wilson (eds.), From Animals to Animats2 (pp. 434–443). Cambridge, MA: MIT Press.

    Google Scholar 

  • Brooks, R.A. (1992). Artificial life and real robots. Proceedings of the First European Conference on Artificial Life (pp. 3–10). Cambridge, MA: MIT Press.

    Google Scholar 

  • Cliff, D.T., P. Husbands, & I. Harvey (1992). Evolving visually guided robots. Cognitive Science Research Paper 220. Brighton, UK: University of Sussex.

    Google Scholar 

  • Cruse, H. (1991). Coordination of leg movement in walking animals. In J.-A. Meyer & S.W. Wilson (eds.), From Animals to Animats (pp. 105–119). Cambridge, MA: MIT Press.

    Google Scholar 

  • Fernald, R.D. (1984) Neuroethology according to Hoyle. Behavioural and Brain Sciences 7, 388.

    Article  Google Scholar 

  • Franceschini, N., A. Riehle, & A. LeNestour (1989). Directionally selective motion detection by insect neurons. In D.G. Stavenga & R.C. Hardie (eds.), Facets of vision (360–390). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Franceschini, N., J.-M. Pichon, & C. Blanes (1991). Real time visuomotor control: From flies to robots. Proccedings of IEEE Fifth International Conference on Advanced Robotics (pp. 931–935). Pisa, Italy.

    Google Scholar 

  • Hansell, M.H. (1984) Animal architecture and building behaviour. London: Longman.

    Google Scholar 

  • Horswill, I.D., & R. Brooks (1988). Situated vision in a dynamic world: Chasing objects. Proceedings of AAAI-88, 796–800. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hoy, R. (1993). Neuroethology of acoustic startle and escape in insects. In R. Beer, R.E. Ritzmann, & T.M. McKenna (eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 39–158). Boston, MA: Academic Press.

    Google Scholar 

  • Huber, F., & J. Thorson (1985). Cricket auditory communication. Scientific American 253 (6), 47–54.

    Article  Google Scholar 

  • Huntingford, F. (1984). The study of animal behaviour. London: Chapman and Hall.

    Book  Google Scholar 

  • Kreigman, D.J., E. Triedl, & T.O. Binford (1987). A mobile robot: Sensing, planning and locomotion. Proccedings of IEEE International Conference on Robotics and Automation (pp. 402–408). Washington, DC.

    Google Scholar 

  • Lewis, D.B., & D.M. Gower (1980). Biology of communication. Glasgow: Blackie and Son.

    Google Scholar 

  • Maes, P. (1991). A bottom up mechanism for behaviour selection in an artificial creature. In J.-A. Meyer & S.W. Wilson (eds.), From Animals to Animats (pp. 238–246). Cambridge: MIT Press.

    Google Scholar 

  • Malcolm, C. (1990). Behavioural modules in robotic assembly. Unpublished manuscript. Department of AI, University of Edinburgh.

    Google Scholar 

  • Mataric, M. (1990). A distributed model for mobile robot environment learning and navigation. A.I. Memo 1228. Cambridge, MA: MIT

    Google Scholar 

  • McFarland, D., & T. Bösser (1993) Intelligent behaviour in animals and robots. Cambridge, MA: MIT Press.

    Google Scholar 

  • Meyer, J.A., & A. Guillot (1991). Simulation of adaptive behaviour in animats: Review and prospect. In J.-A. Meyer & S.W. Wilson (eds.), From Animals to Animats (pp. 2–14). Cambridge, MA: MIT Press.

    Google Scholar 

  • Moravec, H.P. (1983). The Stanford Cart and the CMU Rover. Proceedings of the IEEE 71, 872–884.

    Article  Google Scholar 

  • Nehmzow, U. (1993) Compass-based robot navigation. Unpublished manuscript.

    Google Scholar 

  • Pebody, M. (1991) How to make a Lego robot do the right thing. M.Sc. Thesis. Edinburgh: University of Edinburgh.

    Google Scholar 

  • Pfeifer, R. (1993) Cheap designs: Exploiting the dynamics of the system-environment interaction. Proceedings of the Conference on Prerational Intelligence: Phenomenology of Complexity Emerging in Systems of Agents Interacting Using Simple Rules 2, 81–91. Bielefeld, Germany: Zentrum für interdisziplinäre Forschung (ZiF) der Universität Bielefeld.

    Google Scholar 

  • Raibert, M.H. (1989). Dynamically stable legged locomotion. Artificial Intelligence — Technical Report 1179. Cambridge, MA: MIT.

    Google Scholar 

  • Ritzmann, R.E. (1993). The neural organisation of cokroach escape and its rôle in context depending orientation. In R. Beer, R.E. Ritzmann, & T.M. McKenna (eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 113–138). Boston, MA: Academic Press.

    Google Scholar 

  • Schildberger, K. (1988). Behavioural and neuronal methods of cricket phonotaxis. Experientia 44, 408–415.

    Article  Google Scholar 

  • Tinbergen, N. (1951). The study of instinct. Oxford: Clarendon Press.

    Google Scholar 

  • Webb, B. (1993). Perception in real and artificial insects. PhD. Thesis. Edinburgh: University of Edinburgh.

    Google Scholar 

  • Webb, B. (1994). A robotic model of cricket phonotaxis. In D. Cliff, P. Husbands, J.-A. Meyer, & S.W. Wilson (eds.), From Animals to Animats 3 (pp.45–54). Cambridge, MA: MIT Press.

    Google Scholar 

  • Weber, T., & J. Thorson (1988).Auditory behaviour in the cricket. II Interaction of the direction of tracking with perceived temporal pattern in split song paradigms. Journal of Comparative Physiology A 163, 13–22.

    Article  Google Scholar 

  • Wehner, R. (1987). Matched filters — Neural models of the external world. Journal of Comparative Physiology A 161, 511–531.

    Article  Google Scholar 

  • Zacharuk, R.Y. (1985). Antennae and sensilla. In G.A. Kerkut & L.I. Gilbert (eds.), Comprehensive insect physiology. Biochemistry and Pharmacology. vol 6. (pp. 1–69). Oxford, UK: Pergamon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Webb, B. (2000). An Arbitrary Architecture for an Artificial Arthropod. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics