Advertisement

Abstract

Pattern formation by self-organization is a common phenomenon during brain development. The enormous number of neurons and their connections makes it impossible for organisms to completely prespecify neural connectivity patterns, for example, within their genomes. Instead organisms seem to specify processes which then generate the patterns which are observed in the brain. These processes are supposedly much simpler than the actual patterns, and it is our hope that there are only few and that they can be cast into a small set of simple rules.

Keywords

Receptive Field Lateral Geniculate Nucleus Macaque Monkey Ocular Dominance Sensory Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartfeld, E., & A. Grinvald (1992). Relationships between orientation-preference pinwheels cytochrome oxidase blobs, and ocular dominance columns in primate striate cortex. Proceedings of the National Academy of Sciences, USA, 89, 11905–11909.CrossRefGoogle Scholar
  2. Blasdel, G.G. (1992). Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. Journal of Neuroscience 12, 3117–3138.Google Scholar
  3. Blasdel, G.G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience 12, 3139–3161.Google Scholar
  4. Blasdel, G.G., & G. Salama (1986). Voltage sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585.CrossRefGoogle Scholar
  5. Dow, B.M., R.G. Vautin, & R. Bauer (1985). The mapping of visual space onto foveal striate cortex in the macaque monkey. Journal of Neuroscience 5, 890–902.Google Scholar
  6. Erwin, E., K. Obermayer, & K. Schulten (1992a). Self-organizing maps: Stationary states, metastability and convergence rate. Biological Cybernetics 67, 35–45.CrossRefzbMATHGoogle Scholar
  7. Erwin, E., K. Obermayer, & K. Schulten (1992b). Self-organizing maps: Ordering, convergence pProperties and energy functions. Biological Cybernetics 67, 47–55.CrossRefzbMATHGoogle Scholar
  8. Erwin, E., K. Obermayer, & K. Schulten (1993). A comparison of models of visual cortical map formation. In F. Eckman & J. Bower (eds.), Computation and neural systems (pp. 395–402). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  9. Erwin, E., K. Obermayer, & K. Schulten (1995). Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation 7, 425–468.Google Scholar
  10. Graepel, T., M. Burger, & K. Obermayer (1997). Phase-transitions in stochastic self-organizing maps. Physical Review E56, 3876–3890Google Scholar
  11. Hart, J., R.S. Berndt, & A. Caramazza (1985). Category-specific naming deficit following cerebral infarction. Nature 316, 439–440.CrossRefGoogle Scholar
  12. Hebb, D. (1949). The organisation of behaviour. New York: Wiley.Google Scholar
  13. Hubel, D.H., & D.C. Freeman (1977). Projection into the visual field of ocular dominance columns in macaque monkey. Brain Research 122, 336–343.CrossRefGoogle Scholar
  14. Kaas, J.H., R.J. Nelson, M. Sur, C.S. Lin, & M.M. Merzenich (1979). Multiple representations of the body within the primary somatosensory cortex of primates. Science 204, 521–523.CrossRefGoogle Scholar
  15. Kohonen, T. (1982a). Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kohonen, T. (1982b). Analysis of a simple self-organizing process. Biological Cybernetics 44, 135–140.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kohonen, T. (1990). The self-organizing map. Proceedings IEEE 78, 1464–1480.CrossRefGoogle Scholar
  18. Linsker, R. (1986). From basic network principles to neural architecture: Emergence of orientation columns. Proceedings of the National Academy of Sciences, USA, 83, 8779–8783.CrossRefGoogle Scholar
  19. Livingstone, M.S., & D. Hubel (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740–749.CrossRefGoogle Scholar
  20. Malonek, D., R.B.H. Tootell, & A. Grinvald (1993). Optical imaging of orientation, direction and retinotopic organization in area MT of the owl monkey. Society of Neuroscience Abstracts 23, 1500.Google Scholar
  21. Merzenich, M.M., R.J. Nelson, M.P. Stryker, & M.S. Cynader (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology 224, 591–605.CrossRefGoogle Scholar
  22. Miller, K.D. (1992). Development of orientation columns via competition between ON-center and OFF-center inputs. Neuroreport 3, 73–76.CrossRefGoogle Scholar
  23. Miller, K.D. (1994). Development of orientation columns through activity dependent competition between ON- and OFF-center inputs. Journal of Neuroscience 14, 409–441.Google Scholar
  24. Miller, K.D., J.B. Keller, & M.P. Stryker (1989). Ocular dominance column development: Analysis and simulation. Science 245, 605–615.CrossRefGoogle Scholar
  25. Obermayer, K. (1993). Adaptive neuronale Netze und ihre Anwendung als Modelle der Entwicklung kortikaler Karten. St. Augustin: Infix-Verlag.Google Scholar
  26. Obermayer, K., & G.G. Blasdel (1993). Geometry of orientation and ocular dominance columns in monkey striate cortex. Journal of Neuroscience 13, 4114–4129.Google Scholar
  27. Obermayer, K., & G.G. Blasdel (1997). Singularities in primate orientation maps. Neural Computation 9, 555–576.CrossRefGoogle Scholar
  28. Obermayer, K., G.G. Blasdel, & K. Schulten (1992a). A statistical mechanical analysis of self-organization and pattern formation during the development of visual maps. Physical Review A 45, 7568–7589.CrossRefGoogle Scholar
  29. Obermayer, K., K. Schulten, & G.G. Blasdel (1992b). Comparison of a neural network model for the formation of brain maps with experimental data. In D.S. Touretzky & R. Lippman (eds.), Advances in neural information processing systems 4 (pp. 83–90). San Mateo: Morgan Kaufmann.Google Scholar
  30. Obermayer, K., H. Ritter, & K. Schulten (1990a). Large-scale simulations of self-organizing neural networks on parallel computers: Application to biological modelling. Parallel Computing 14, 381–404.CrossRefGoogle Scholar
  31. Obermayer, K., H. Ritter, & K. Schulten (1990b). A principle for the formation of the spatial structure of cortical feature maps. Proceedings of the National Academy of Sciences, USA, 87, 8345–8349.CrossRefGoogle Scholar
  32. Obermayer, K., H. Ritter, & K. Schulten (1992c). A model for the development of the spatial structure of retinotopic maps and orientation columns. IEICE T Fune A 75, 537–545.Google Scholar
  33. Olsen, J.F., E.I. Knudsen, & S.D. Esterly (1989). Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. Journal of Neuroscience 9, 2591–2605.Google Scholar
  34. Piepenbrock, C., & Obermayer, K. (1999). The role of lateral competition in ocular dominance development. In S. Solla & M. Kearns (eds.), Advances in neural information processing systems 11, Cambridge, MA: MIT Press.Google Scholar
  35. Piepenbrock, C., Ritter, H., & Obermayer, K. (1997). The joint development of orientation and ocular dominance: Role of constraints. Neural Computation 9, 959–970.CrossRefGoogle Scholar
  36. Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the Rhesus monkey. Nature 261, 467–471.CrossRefGoogle Scholar
  37. Ritter, H. (1991). Asymptotic level density for a class of vector quantization processes. IEEE Transaction on Neural Networks 2, 173–175.MathSciNetCrossRefGoogle Scholar
  38. Ritter, H., & T. Kohonen (1989). Self-organizing semantic maps. Biological Cybernetics 61, 241–254.CrossRefGoogle Scholar
  39. Ritter, H., K. Obermayer, K. Schulten, & J. Rubner (1991). Self-organizing maps and adaptive filters. In E. Domani, J.L. van Hemmen, & K. Schulten (eds.), Physics of neural networks (pp. 281–306). New York: Springer Verlag.Google Scholar
  40. Ritter, H., & K. Schulten (1988). Convergence properties of Kohonen’s topology conserving maps: Fluctuations, stability, and dimension selection. Biological Cybernetics 60, 59–71.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Stein, B.E., & M.A. Meredith (1993). The merging of the senses. Cambridge, MSA: MIT Press.Google Scholar
  42. Stetter, M., Lang, E.W., & Obermayer, K. (1998). Unspecific long-term potentiation can evoke functional segregation in a model of area 17. NeuroReport 9, 2967–2702.CrossRefGoogle Scholar
  43. Suga, N., & W.E. O’Neill (1979). Neural axis fepresenting target range in the Auditory cortex of the mustache bat. Science 206, 351–353.CrossRefGoogle Scholar
  44. Swindale, N.V. (1982). A model for the formation of orientation columns. Proceedings of the Royal Society London B 215, 211–230.CrossRefGoogle Scholar
  45. Tusa, R.J., A.C. Rosenquist, & L.A. Palmer (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185, 657–678.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Klaus Obermayer
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations