Skip to main content

Part of the book series: Studies in Cognitive Systems ((COGS,volume 26))

  • 588 Accesses

Abstract

Pattern formation by self-organization is a common phenomenon during brain development. The enormous number of neurons and their connections makes it impossible for organisms to completely prespecify neural connectivity patterns, for example, within their genomes. Instead organisms seem to specify processes which then generate the patterns which are observed in the brain. These processes are supposedly much simpler than the actual patterns, and it is our hope that there are only few and that they can be cast into a small set of simple rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartfeld, E., & A. Grinvald (1992). Relationships between orientation-preference pinwheels cytochrome oxidase blobs, and ocular dominance columns in primate striate cortex. Proceedings of the National Academy of Sciences, USA, 89, 11905–11909.

    Article  Google Scholar 

  • Blasdel, G.G. (1992). Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. Journal of Neuroscience 12, 3117–3138.

    Google Scholar 

  • Blasdel, G.G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience 12, 3139–3161.

    Google Scholar 

  • Blasdel, G.G., & G. Salama (1986). Voltage sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585.

    Article  Google Scholar 

  • Dow, B.M., R.G. Vautin, & R. Bauer (1985). The mapping of visual space onto foveal striate cortex in the macaque monkey. Journal of Neuroscience 5, 890–902.

    Google Scholar 

  • Erwin, E., K. Obermayer, & K. Schulten (1992a). Self-organizing maps: Stationary states, metastability and convergence rate. Biological Cybernetics 67, 35–45.

    Article  MATH  Google Scholar 

  • Erwin, E., K. Obermayer, & K. Schulten (1992b). Self-organizing maps: Ordering, convergence pProperties and energy functions. Biological Cybernetics 67, 47–55.

    Article  MATH  Google Scholar 

  • Erwin, E., K. Obermayer, & K. Schulten (1993). A comparison of models of visual cortical map formation. In F. Eckman & J. Bower (eds.), Computation and neural systems (pp. 395–402). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Erwin, E., K. Obermayer, & K. Schulten (1995). Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation 7, 425–468.

    Google Scholar 

  • Graepel, T., M. Burger, & K. Obermayer (1997). Phase-transitions in stochastic self-organizing maps. Physical Review E56, 3876–3890

    Google Scholar 

  • Hart, J., R.S. Berndt, & A. Caramazza (1985). Category-specific naming deficit following cerebral infarction. Nature 316, 439–440.

    Article  Google Scholar 

  • Hebb, D. (1949). The organisation of behaviour. New York: Wiley.

    Google Scholar 

  • Hubel, D.H., & D.C. Freeman (1977). Projection into the visual field of ocular dominance columns in macaque monkey. Brain Research 122, 336–343.

    Article  Google Scholar 

  • Kaas, J.H., R.J. Nelson, M. Sur, C.S. Lin, & M.M. Merzenich (1979). Multiple representations of the body within the primary somatosensory cortex of primates. Science 204, 521–523.

    Article  Google Scholar 

  • Kohonen, T. (1982a). Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1982b). Analysis of a simple self-organizing process. Biological Cybernetics 44, 135–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1990). The self-organizing map. Proceedings IEEE 78, 1464–1480.

    Article  Google Scholar 

  • Linsker, R. (1986). From basic network principles to neural architecture: Emergence of orientation columns. Proceedings of the National Academy of Sciences, USA, 83, 8779–8783.

    Article  Google Scholar 

  • Livingstone, M.S., & D. Hubel (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740–749.

    Article  Google Scholar 

  • Malonek, D., R.B.H. Tootell, & A. Grinvald (1993). Optical imaging of orientation, direction and retinotopic organization in area MT of the owl monkey. Society of Neuroscience Abstracts 23, 1500.

    Google Scholar 

  • Merzenich, M.M., R.J. Nelson, M.P. Stryker, & M.S. Cynader (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology 224, 591–605.

    Article  Google Scholar 

  • Miller, K.D. (1992). Development of orientation columns via competition between ON-center and OFF-center inputs. Neuroreport 3, 73–76.

    Article  Google Scholar 

  • Miller, K.D. (1994). Development of orientation columns through activity dependent competition between ON- and OFF-center inputs. Journal of Neuroscience 14, 409–441.

    Google Scholar 

  • Miller, K.D., J.B. Keller, & M.P. Stryker (1989). Ocular dominance column development: Analysis and simulation. Science 245, 605–615.

    Article  Google Scholar 

  • Obermayer, K. (1993). Adaptive neuronale Netze und ihre Anwendung als Modelle der Entwicklung kortikaler Karten. St. Augustin: Infix-Verlag.

    Google Scholar 

  • Obermayer, K., & G.G. Blasdel (1993). Geometry of orientation and ocular dominance columns in monkey striate cortex. Journal of Neuroscience 13, 4114–4129.

    Google Scholar 

  • Obermayer, K., & G.G. Blasdel (1997). Singularities in primate orientation maps. Neural Computation 9, 555–576.

    Article  Google Scholar 

  • Obermayer, K., G.G. Blasdel, & K. Schulten (1992a). A statistical mechanical analysis of self-organization and pattern formation during the development of visual maps. Physical Review A 45, 7568–7589.

    Article  Google Scholar 

  • Obermayer, K., K. Schulten, & G.G. Blasdel (1992b). Comparison of a neural network model for the formation of brain maps with experimental data. In D.S. Touretzky & R. Lippman (eds.), Advances in neural information processing systems 4 (pp. 83–90). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Obermayer, K., H. Ritter, & K. Schulten (1990a). Large-scale simulations of self-organizing neural networks on parallel computers: Application to biological modelling. Parallel Computing 14, 381–404.

    Article  Google Scholar 

  • Obermayer, K., H. Ritter, & K. Schulten (1990b). A principle for the formation of the spatial structure of cortical feature maps. Proceedings of the National Academy of Sciences, USA, 87, 8345–8349.

    Article  Google Scholar 

  • Obermayer, K., H. Ritter, & K. Schulten (1992c). A model for the development of the spatial structure of retinotopic maps and orientation columns. IEICE T Fune A 75, 537–545.

    Google Scholar 

  • Olsen, J.F., E.I. Knudsen, & S.D. Esterly (1989). Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. Journal of Neuroscience 9, 2591–2605.

    Google Scholar 

  • Piepenbrock, C., & Obermayer, K. (1999). The role of lateral competition in ocular dominance development. In S. Solla & M. Kearns (eds.), Advances in neural information processing systems 11, Cambridge, MA: MIT Press.

    Google Scholar 

  • Piepenbrock, C., Ritter, H., & Obermayer, K. (1997). The joint development of orientation and ocular dominance: Role of constraints. Neural Computation 9, 959–970.

    Article  Google Scholar 

  • Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the Rhesus monkey. Nature 261, 467–471.

    Article  Google Scholar 

  • Ritter, H. (1991). Asymptotic level density for a class of vector quantization processes. IEEE Transaction on Neural Networks 2, 173–175.

    Article  MathSciNet  Google Scholar 

  • Ritter, H., & T. Kohonen (1989). Self-organizing semantic maps. Biological Cybernetics 61, 241–254.

    Article  Google Scholar 

  • Ritter, H., K. Obermayer, K. Schulten, & J. Rubner (1991). Self-organizing maps and adaptive filters. In E. Domani, J.L. van Hemmen, & K. Schulten (eds.), Physics of neural networks (pp. 281–306). New York: Springer Verlag.

    Google Scholar 

  • Ritter, H., & K. Schulten (1988). Convergence properties of Kohonen’s topology conserving maps: Fluctuations, stability, and dimension selection. Biological Cybernetics 60, 59–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, B.E., & M.A. Meredith (1993). The merging of the senses. Cambridge, MSA: MIT Press.

    Google Scholar 

  • Stetter, M., Lang, E.W., & Obermayer, K. (1998). Unspecific long-term potentiation can evoke functional segregation in a model of area 17. NeuroReport 9, 2967–2702.

    Article  Google Scholar 

  • Suga, N., & W.E. O’Neill (1979). Neural axis fepresenting target range in the Auditory cortex of the mustache bat. Science 206, 351–353.

    Article  Google Scholar 

  • Swindale, N.V. (1982). A model for the formation of orientation columns. Proceedings of the Royal Society London B 215, 211–230.

    Article  Google Scholar 

  • Tusa, R.J., A.C. Rosenquist, & L.A. Palmer (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185, 657–678.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Obermayer, K. (2000). Modelling the Formation of Sensory Representations in the Brain. In: Cruse, H., Dean, J., Ritter, H. (eds) Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Studies in Cognitive Systems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0870-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0870-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3792-1

  • Online ISBN: 978-94-010-0870-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics