Skip to main content

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 60))

  • 488 Accesses

Abstract

Several points have to be emphasized in the direct numerical approach to solving the Boltzmann equation. The direct integration methods contain features intrinsic to computational mathematics based on notions of approximation and convergence. In contrast, for example, to the physical and engineering ideas of Monte Carlo simulation, the direct approaches (besides the obvious physical analogies) appeal originally to clear mathematical images. However, the correct and rigorous proofs of convergence of this discrete scheme solution to the solution of the starting equation is not a simple problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellomo N., Palczevski A., Toscani G. (1989) Mathematical topics in nonlinear kinetic theory, World Scietific, Singapore.

    Book  Google Scholar 

  2. Wachmann M., Hamel B.B. (1967) A discrete ordinate technique for non-linear Boltz-mann equation with application to pseudo-shock relaxation. Rarefied Gas Dynamics. ed. C.L. Brundin, Oxford Univerisy Press, Vol. no. 1, pp.675–694.

    Google Scholar 

  3. Nordsieck A., Hicks B.L. (1967) Monte Carlo evaluation of the Boltzmann collision integral. Rarefied Gas Dynamics, C.L. Brundin ed., Academic Press, New York, Vol. no. 1, pp. 695–710.

    Google Scholar 

  4. Tcheremissine F.G. (1970) Numerical solving the kinetic Boltzmann equation for one-dimensional steady gas flows, USSR J. Comput. Maths. Math. Phys., Vol. no. 10, pp. 654–665.

    Google Scholar 

  5. Aristov V.V., Tcheremissine F.G. (1980) Conservative splitting method for solving the Boltzmann equation. USSR J. Comp. Maths. Math. Phys., Vol. no. 20, pp. 208–225.

    Article  MATH  Google Scholar 

  6. Aristov V.V. (1985) Solving the Boltzmann equation for discrete velocities Doklady Academii Nauk SSSR, Vol. no. 283, pp.831–834.

    MathSciNet  ADS  Google Scholar 

  7. Aristov V.V. (1991) Development of the regular method of solution of the Boltzmann equation and nonuniform relaxation problems, Rarefied Gas Dynamics, A. Beylich ed., VCH, Weinheim, pp. 879–885.

    Google Scholar 

  8. Tan Z., Varghese P.L. (1994) The Δ — ε method for the Boltzmann equation, J. Comp. Phys., Vol. no. 110, pp. 327–340.

    MathSciNet  MATH  Google Scholar 

  9. Willis D.R. (1963) Heat transfer in a rarefied gas between parallel plates at large temperature ratios. Rarefied Gas Dynamics, Laurman J.A. ed., Academic Press, New York, pp.209–225.

    Google Scholar 

  10. Vallander S.V. (1960) New kinetic equations in the theory of monatomic gases. Doklady Academii Nauk SSSR, Vol. no. 131, pp. 58–60.

    MathSciNet  Google Scholar 

  11. Carleman T. (1957) Problemes mathematiques dans la theorie cinetique des gaz. Almqvist and Wiksells, Uppsala.

    MATH  Google Scholar 

  12. Tcheremissine F.G. (1969) Method of direct solving the Boltzmann equation Numerical methods in the rarefied gas theory, Computing Center of USSR Academy Sciences, Moscow, pp. 45–64.

    Google Scholar 

  13. Hicks B.L., Yen S.M., Reilly B.J. (1972) The internal structures of shock waves, J. Fluid Mech., Vol. no. 53, pp. 85–111.

    Article  ADS  MATH  Google Scholar 

  14. Aristov V.V., Tcheremissine F.G. (1976) Splitting of the nonuniform kinetic operator of the Boltzmann equation, Doclady Academii Nauk SSSR, Vol.231. pp. 49–52.

    ADS  Google Scholar 

  15. Aristov V.V. (1995) Numerical analysis of free jets at small Knudsen numbers, Rarefied Gas Dynamics, Oxford University Press. Vol. no. 2, pp. 1293–1299.

    Google Scholar 

  16. Godunov S.K., Riabenkii V.S. (1987) Difference schemes. New Holland, Amsterdam.

    Google Scholar 

  17. Scheprov A.V. (1995) A numerical analysis of molecular motion in a spherically symmetric gravitational field, J. Comp. Maths. Math. Phys., Vol. no. 35, pp. 1505–1515.

    Google Scholar 

  18. Aristov V.V., Tcheremissine F.G. (1992) Direct numerical solutions of the Boltzmann kinetic equation. Computing Center of the Russian Academy of Sciences, Moscow.

    Google Scholar 

  19. Buet C. (1994) A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Preprint, CEA-CEL-V.

    Google Scholar 

  20. Walus W. Computational methods for the Boltzmann equation (1995) Lecture notes on the mathematical theory of the Boltzmann equation, World Scientific, Singapore, pp. 179–223.

    Book  Google Scholar 

  21. Rogier F., Schneider J. (1994) A direct method for solving the Boltzmann equation Transport Theory and Stat. Physics, Vol. no. 23, pp.313–318.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Tcheremissine F.G. (1991) Fast solutions of the Boltzmann equation. Rarefied Gas Dynamics, A. Beylich ed., VCH, Weinheim, pp. 273–284.

    Google Scholar 

  23. Aristov V.V., Shishkova I.N., Tcheremissine F.G. (1994) Solution of the Boltzmann equation for study of reflection of shock wave from a wedge. Rarefied Gas Dynamics, AIAA, Progr. in Astro. and Aero., Vol. no. 158, pp. 448–457.

    Google Scholar 

  24. Korobov N.M. (1963) Number theory methods in approximation analysis. Fizmatgiz, Moscow.

    Google Scholar 

  25. Korobov N.M. (1989) Exponential sums and their applications. Kluwer Publishers, Dordrecht.

    Google Scholar 

  26. Ermakov S.M. and Mihailov G.A. (1976) Course of the mathematical modelling, Nauka, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aristov, V.V. (2001). Main Features of the Direct Numerical Approaches. In: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Fluid Mechanics and its Applications, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0866-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0866-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0388-2

  • Online ISBN: 978-94-010-0866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics