Skip to main content

One-Dimensional Kinetic Problems

  • Chapter
  • 493 Accesses

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 60))

Abstract

This chapter studies several relatively simple problems. Some of them can be considered as test cases, others have physical interest. The problems of heat transfer or the normal shock wave structure are, in fact, a part of more complex processes in a rarefied gas. Although these one-dimensional steady flows for monatomic gas are well investigated now, obtaining reliable test solutions is a special and not very simple problem. The conservative splitting method of the direct numerical analysis of the Boltzmann equation is one of the preferable approaches to attain this aim. One of the possible purposes can be a consideration of several methods, in order to understand the order of their accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tcheremissine F.G. (1970) Solution of the kinetic Boltzmann equation in the problem of heat transfer between parallel infinite places. Izv. AN SSSR. Mechanika zhidkosti i gaza, no.5, pp. 185–188.

    Google Scholar 

  2. Limar E.F., Sedova E.S., Janitskii V.E. (1979) Comparison of two solution of the problem on heat transfer in a rarefied gas, Numerical methods in rarefied gas dynamics. Computing Center of USSR Academy of Sciences. Moscow. Vol. no. 4, pp.117–129.

    Google Scholar 

  3. Ohwada T. (1996) Heat flow and density and temperature distibution in a rarefied gas between parallel plates with different temperatures: Finite difference analysis of the nonlinear Boltzman equation for hard-sphere molecules, Physics of Fluids, Vol. no. 8, pp. 217–234.

    Article  MathSciNet  Google Scholar 

  4. Ohwada T. (1997) Investigation of heat transfer problem of a rarefied gas between parallel plates with different temperatures, Rarefied Gas Dynamics, ed.C. Shen, Peking University, pp. 327–332.

    Google Scholar 

  5. Bird G. (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon press, Oxford.

    Google Scholar 

  6. Liu S, Lees T. (1964) Moment method for heat flow problems Physics of Fluids, Vol. no. 24, pp. 319–327.

    Google Scholar 

  7. Mausbach P., Beylich A.E. (1985) Numerical solution of the Boltzmann equation for one-dimensional problems in binary mixtures Rarefied Gas Dynamics, eds. O. Belotserkovskii et al., Vol. no. 1, pp.285–292.

    Google Scholar 

  8. Frezzotti A. and Pavani R. (1993) Direct numerical solution of the Boltzmann equation on a parallel computer, Computers and Fluids, Vol. no. 22., pp. 1–8.

    Article  MATH  Google Scholar 

  9. Tcheremissine F.G. (1972) Rarefied gas motion between infinite planeparallel emitting and condensing surfaces, Izv. USSR Acad.Sci., Mechanica zhidkosti i gaza, no.2, pp. 176–178.

    Google Scholar 

  10. Yen S.M. (1970) Kinetic theory approach to one-dimensional condensation-evaporation problem, Rarefied Gas Dynamics, Vol. no. 2, pp. 853–860.

    Google Scholar 

  11. Yen S.M., Ytrehus T. (1981) Treatment of the nonequilibrium vapor motion near an evaporating interphase boundary, Chem. Engng. Communs, Vol. no. 10, pp. 357–367.

    Article  Google Scholar 

  12. Aristov V.V., Ivanov. S., Tcheremissine F.G. (1991) Solution of the problem on one-dimensinal heat transfer in a rarefied gas by two methods, USSR J. Comp.Math. Math.Phys., Vol. no. 31, pp. 623–626.

    Google Scholar 

  13. Ivanov M.S., Rogasinskii S.V. (1991) Theoretical analysis of traditional and modern schemes of the DSMC method, Rarefied Gas Dynamics, A. Beylich ed. VCH, Weinheim, pp. 629–642.

    Google Scholar 

  14. Belotserkovskii O.M, Yanitskii V.E. (1975) Statistical method of particles in cells. I., USSR J. Comput. Maths. Math. Phys., Vol. no. 15, pp. 6–23.

    Google Scholar 

  15. Limar E.F. (1985) Numerical solution of the Boltzmann equation by the integral approximation method, Rarefied Gas Dynamics. O. Belotserkovskii et al. eds., Plenum Press, New York, Vol. no.1, pp. 277–283.

    Google Scholar 

  16. Kogan M.N. (1969) Rarefied gas dynamics. Plenum Press, New York.

    Google Scholar 

  17. Cercignani C. (1988) The Boltzmann equation and its application. Springer-Verlag, Berlin.

    Book  Google Scholar 

  18. Tamm I.E. (1965) On the shock wave width of a strong intensity, Proc. of Lebedev’s Physical Institute, Vol. no. 29, pp.239–249.

    Google Scholar 

  19. Mott-Smith H.M. (1951) The solution of the Boltzmann equation for a shock wave, Phys.Rev., Vol. no.82,, pp. 885–892.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Schmidt B. (1969) Electrom beam density measurements in shock waves in argon, J.Fluid Mech., Vol. no. 39, pp. 361–373.

    Article  ADS  Google Scholar 

  21. Alsmeyer H. (1976) Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J.Fluid.Mech., Vol. no.74, pp. 497–513.

    Article  ADS  Google Scholar 

  22. Liepman H.W., Narasimha R., Shachine M.T. (1962) Structure of a plane shock layer Physics of Fluids, Vol. no. 5, pp. 1313–1324.

    Article  ADS  Google Scholar 

  23. Zhuk V.I., Rykov V.I., Shakhov E.V. (1973) Kinetic models and the problem on a shock wave structure Izv. Acad. Nauk SSSR. Mechanika Zhidkosti i gasa (transl. in Fluid Dynamics), no.4, pp. 135–141.

    Google Scholar 

  24. Nanbu K., Watanabe Y. (1984) Analysis of the internal structure of shock waves by means of the exact direct-simulation method. Rep. Inst. High Speed Mech., Tohoku University, Vol. no. 48, pp. 1–75.

    Google Scholar 

  25. Hicks B.L., Yen S.M., Reilly B.J. (1972) The internal structures of shock waves, J. Fluid Mech., Vol. no.53, pp.85–111.

    Article  ADS  MATH  Google Scholar 

  26. Yen S.M., Ng W. (1974) Shock wave structure and intermolecular collision laws, J. Fluid Mech., Vol.65, pp. 127–144.

    Article  ADS  MATH  Google Scholar 

  27. Theremissine F.G. (1970) Numerical solving the kinetic Boltzmann equation for one-dimensional steady gas flows, USSR J.Comput. Maths. Math. Phys., Vol. no.10, pp. 654–665.

    Google Scholar 

  28. Aristov V.V., Theremissine F.G. (1980) Conservative splitting method for solving the Boltzmann equation. USSR J. Comp. Math. Math.Phys., Vol. no. 20, pp. 208–225.

    Article  MATH  Google Scholar 

  29. Aristov V.V., Tcheremissine F.G. (1982) Shock wave structure in monatomic gas at power interaction potentials, Izv. Acad. Nauk SSSR. Mechanika Zhidkosti i gasa (transl. in Fluid Dynamics), no.2, pp. 179–183.

    Google Scholar 

  30. Tan Z., Chen Y.-K., Varghese P.L. and Howell J.R. (1989) A new numerical strategy to evaluate the collision integral of the Boltzmann equation, Rarefied Gas Dynamics, Progr. in Aeronaut. and Astronaut. pp. 359–373.

    Google Scholar 

  31. Ohwada T. (1993) Structure of normal shock wave: direct numerical analysis of the Boltzman equation for hard-sphere molecules, Physics of Fluids A, Vol. no. 5, pp. 217–234.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Ohwada T. (1994) Numerical analysis of normal shock waves on the basis of the Boltzman equation for hard-sphere molecules, Rarefied Gas Dynamics Progress in Astronaut. and Aeronaut. Washington, Vol. no. 159, pp.482–488.

    Google Scholar 

  33. Buet C. (1994) Resolution deterministe de l’equation de Boltzmann. Commisariat a l’energie atomique. Centre d’etudes de Limeil-Valenton. Department de Mathematiques Appliquees, CEA-N-2747.

    Google Scholar 

  34. Holtz T. and Muntz E. (1983) Molecular velocity distribution function measurements in an argon normal shock wave at Mach number 7. Physics of Fluids, Vol. no. 26, 2425–2436.

    Article  ADS  Google Scholar 

  35. Popov S.P. and Tcheremissine F.G. (1999) Conservative method of solving the Boltzmann equation for central-symmetric interaction potentials, J.Comp. Math. Math. Phys., Vol. no. 39, pp.163–176.

    Google Scholar 

  36. Raines A.A. (1991) Numerical solution of the Boltzmann equation for the one dimensional problem in binary gas mixture, Rarefied Gas Dynamics A. Beylich ed., VHC, Weinheim, pp. 328–331.

    Google Scholar 

  37. Shcheprov A.V. (1995) The numerical investigation of two-component gas mixture flows in the spherically symmetric gravitational field Raref. Gas Dynam, Harvey and Lord eds., Oxford Univ. Press. Vol. no.2, pp. 1204–1208.

    Google Scholar 

  38. Scheprov A.V. (1995) A numerical analysis of molecular motion in a spherically symmetric gravitational field, Comp. Maths Math. Phys., Vol. no.35, pp. 1505–1515.

    Google Scholar 

  39. Shakhov E.V. (1971) Steady flow of a rarefied gas from a spherical source or sink. Izv. Acad. Nauk SSSR. Mechanika Zhidkosti i gasa (transl. in Fluid Dynamics), no.2, pp. 58–66.

    Google Scholar 

  40. Zhuk V.I. (1977) The solution of the kinetic equation for a gas in the gravitational field of planets, Dokl. Akad. Nauk SSSR, Vol. no. 233, pp. 325–328.

    ADS  Google Scholar 

  41. Zhuk V.I. and Shakhov E.V. (1973) Dispersion of a plane layer of rarefied gas into a vacuum. USSR J. Comp. Maths Math. Phys., Vol. no. 13, pp. 984–989.

    MATH  Google Scholar 

  42. Sone Y. and Sugimoto H. (1992) Numerical analysis of steady flows of a gas evaporating from its cylindrical condensed phase on the basis of kinetic theory, Phys. Fluids A, Vol. no. 4, pp. 419–440.

    Article  ADS  Google Scholar 

  43. Sone Y. and Sugimoto H. (1993) Kinetic theory analysis of steady evaporating flows from a spherical condensed phase into a vacuum. Phys. Fluids A, Vol. no. 5, pp. 1491–1511.

    Article  ADS  MATH  Google Scholar 

  44. Opik E.J. and Singer S.F. (1961) Distribution of density in a planetary exosphere. Phys. Fluids., 1961, Vol.4, pp. 221–233.

    Article  MathSciNet  ADS  Google Scholar 

  45. Aamodt R.E. and Case K.M. (1962) Density in a simple model of the exosphere, Phys. Fluids, Vol. no. 5, pp. 1019–1021.

    Article  ADS  MATH  Google Scholar 

  46. Chamberlain J.W. (1963) Planetary coronae and atmospheric evaporation, Planetary and Space Sci., Vol. no. 11, pp. 901–960.

    Article  ADS  Google Scholar 

  47. Scheprov A.V. (1996) A numerical investigation of the recondensation of a mixture of rarefied gases in a spherically symmetrical force field, Comp. Maths Math. Phys., Vol. no. 36, pp. 81–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aristov, V.V. (2001). One-Dimensional Kinetic Problems. In: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Fluid Mechanics and its Applications, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0866-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0866-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0388-2

  • Online ISBN: 978-94-010-0866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics