Skip to main content

Accretion of Planets and Moons

  • Conference paper
New Horizons of Computational Science

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 263))

  • 177 Accesses

Abstract

Planets are formed through accretion of planetesimals, while moons may accrete from a debris disk. Both are systems of a central object and a surrounding particle disk. We have been working on N-body simulations of dynamical evolution of such systems. For planet accretion, we directly showed “runaway growth” of planetesimals and suggested separation distance between protoplanets as a result of a coupling effect of dynamical friction and distant perturbation between protoplanets. For accretion of Earth’s Moon, we showed a single large moon can be produced from the impact-generated debris disk and established a direct relationship between the size of the accreted moon and initial configuration of the debris disk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Boss, A. P. & Peale, S. J. (1984) Dynamical constraints on the origin of the Moon. In Origin of the moon. eds. W. K. Hartmann, R. J. Phillips, Taylor, G. J., Lunar and Planetary Institute, Houston, pp. 59–102

    Google Scholar 

  • Benz, W. Slattery, W. L. & Cameron, A. G. W. (1986) The origin of the Moon and the single impact hypothesis I. Icarus 66 515–535

    Article  Google Scholar 

  • Bodenheimer, P. and Pollack, J. B. (1986) Calculations of the accretion and evolution of giant planets: The effects of solid core. Icarus 67, 391–408

    Article  Google Scholar 

  • Cameron, A. G. W. (1997) The origin of the moon and the single impact hypothesis V. Icarus 126, 126–137

    Article  Google Scholar 

  • Cameron, A. G. W. & Benz, W. (1991) The origin of the Moon and the single impact hypothesis IV. Icarus 92 204–216

    Article  Google Scholar 

  • Canup, R. M. and Esposito, L. W. (1995) Accretion in the Roche zone: co-existence of rings and ringmoons. Icarus 113, 331–352

    Article  Google Scholar 

  • Chambers, J. E., Wetherill, G. W., and Boss, A. P. (1996) The stability of multi-planet systems Icarus 119, 261–268

    Article  Google Scholar 

  • Greenberg, R., Wacker, J., Chapman, C. R., and Hartman, W. K. (1978) Planetesimals to planets: Numerical simulation of collisional evolution. Icarus 35 1-26

    Google Scholar 

  • Hannien, J. and Salo, H. Collisional simulations of satellite Lindblad resonances. Icarus 97 228–247

    Google Scholar 

  • Hartmann, W. K. Davis, D. R. (1975) Satellite-sized planetesimals and lunar origin, Icarus 24, 504–515

    Article  Google Scholar 

  • Hasegawa, M. and Nakazawa, K. (1990) Distant encounter between Keplerian particles Astron. Astrophys. 227, 619–627

    Google Scholar 

  • Hayashi, C., Nakazawa, K., and Nakagawa, Y. (1985) Formation of the solar system. In Protostars and Planets II, eds. D. C. Black and M. S. Matthews, Univ. of Arizona Press, Tuscon, pp. 1100–1153

    Google Scholar 

  • Ida, S. (1990) Stirring and dynamical friction rates of planetesimals in the solar gravitational field. Icarus 88, 129–145

    Article  Google Scholar 

  • Ida, S., Canup, R. M. & Stewart, G. R. (1997) Lunar accretion from an impact-generated disk, Nature 389, 353–357

    Article  CAS  Google Scholar 

  • Ida, S. and Makino, J. (1992) N-body simulation of gravitational interaction between planetesimals and a protoplanet II. Dynamical friction. Icarus 98, 28–37

    Article  Google Scholar 

  • Ida, S. and Makino,J. (1993) Scattering of Planetesimals by a Protoplanet: Slowing Down of Runaway Growth. Icarus 106, 210–227

    Article  Google Scholar 

  • Kokubo, E. and Ida, S. (1995) Orbital Evolution of Protoplanets Embedded in a Swarm of Planetesimals. Icarus 114, 247–257

    Article  Google Scholar 

  • Kokubo, E. and Ida, S. (1996) On Runaway Growth of Planetesimals Icarus 123, 180–191 Kokubo, E. and Ida, S. (1997) Oligarchic growth of protoplanets Icarus 131, 171–178

    Google Scholar 

  • Makino, J. (1991) A modified Aarseth code for GRAPE and vector processors. Publ. Astron. Soc. Japan 43, 859–876

    Google Scholar 

  • Makino, J. and Aarseth S. J. (1992) On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems Publ. Astron. Soc. Japan 44, 141–151

    Google Scholar 

  • Makino, J., Fukushige, T., Funato, Y., and Kokubo, E. (1997) On the mass distribution of planetesimals in the early runaway stage Icarus, submitted

    Google Scholar 

  • Mizuno, H. (1981) Formation of Giant Planets. Prog. Theor. Phys. 64, 544–557

    Article  Google Scholar 

  • Ohtsuki, K. and Ida, S. (1990) Runaway planetary growth with collision rate in the solar gravitational field. Icarus 85, 499–511

    Article  Google Scholar 

  • Richardson, D. C. (1994) Tree code simulations of planetary rings Mon. Not. R. Astron. Soc. 269, 493–511

    Google Scholar 

  • Safronov, V. S. (1969) Evolution of the protoplanetary cloud and formation of the earth and planets. Nauka Press, Moscow.

    Google Scholar 

  • Salo, H. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus 117, 287–312

    Google Scholar 

  • Stevenson, D. J. (1987) Origin of the moon-the collision hypothesis, Ann. Rev. Earth Planet Sci. 15, 271–315

    Article  Google Scholar 

  • Wisdom, J. and Tremaine, S. (1988) Local simulation of planetary rings, Astron. J. 95 925–940

    Article  Google Scholar 

  • Wetherill, G. W. (1980) Formation of the terrestrial planets. Ann. Rev. Astron. Astrophys. 18 77–113

    Article  CAS  Google Scholar 

  • Wetherill, G. W. and Stewart, G. R. (1989) Accumulation of a swarm of small planetesimals. Icarus 77 330–357

    Article  Google Scholar 

  • Wetherill, G. W. and Stewart, G. R. (1993) Formation of planetary embryos: Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106 190–209

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ida, S. (2001). Accretion of Planets and Moons. In: Ebisuzaki, T., Makino, J. (eds) New Horizons of Computational Science. Astrophysics and Space Science Library, vol 263. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0864-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0864-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3848-5

  • Online ISBN: 978-94-010-0864-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics