Skip to main content

High Performance Computing in Biophysics: Recent Experiences and Developments of Charmm

  • Conference paper
New Horizons of Computational Science

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 263))

  • 179 Accesses

Abstract

A short overview of the role of high performance computers in the field is presented with a particular emphasis on the methodological enhancements and performance of one of the most widely known biomolecular simulation codes, CHARMM. Also presented are recent performance results for CHARMM on a variety of hardware platforms including the NIH LoBoS system and the MD-GRAPE special purpose computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, (1983), CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamic Calculations.Journal of Computational Chemistry 4(2)pp. 187–217.

    Article  CAS  Google Scholar 

  2. S.E. Feller, Y. Zhang, R.W. Pastor & B.R. Brooks. (1995) “Constant pressure molecular dynamics simulation: The Langevin piston method.”J. Chem. Phys. 103, pp. 4613–4621.

    Google Scholar 

  3. S.E. Feller, R.M. Venable & R.W. Pastor. (1997) “Computer simulation of a DPPC phospholipid bilayer: Structural changes as a function of molecular surface area.”Langmuir 13, pp. 6555–6561.

    Article  CAS  Google Scholar 

  4. S.E. Feller, D.X. Yin, R.W. Pastor & A.D. MacKerell. (1997) “Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: Parameterization and comparison with diffraction studies.”Biophys. J. 73, pp. 2269–2279.

    Article  PubMed  CAS  Google Scholar 

  5. S.E. Feller, R.W. Pastor, A. Rojnuckarin, S. Bogusz & B.R. Brooks. (1996) “Effect of electrostatic force truncation on interfacial and transport properties of water.”J. Phys. Chem. 100, pp. 17011–17020.

    Article  CAS  Google Scholar 

  6. D. Beglov&B. Roux (1994) “Finite representation of an infinite bulk system- Solvent boundary potential for computer simulations.”J. Chem. Phys. 100, pp. 9050–9063.

    Article  CAS  Google Scholar 

  7. D. Mohanty, R. Elber, D. Thirumalai, D. Beglov, B. Roux. (1997) “Kinetics of peptide folding: Computer simulations of SYPFDV and peptide variants in water.”J. Mol. Biol. 272, pp. 423–442.

    Article  PubMed  CAS  Google Scholar 

  8. U. Essmann, L. Perera, M.L. Berkowitz, T.A. Darden, H. Lee & L.G. Pedersen. (1995) “A smooth particle mesh Ewald method.”J. Chem. Phys. 103pp. 8577–8593.

    Article  CAS  Google Scholar 

  9. S. Bogusz, T.E. Cheatham III & B.R. Brooks. (1998) “Removal of pressure and free energy artifacts in charged periodic systems via net charge corrections to the Ewald potential.” J. Chem. Phys. [in press].

    Google Scholar 

  10. A. Roitberg & R. Elber. (1991) “Modeling side chains in peptides and proteins: Application of the locally enhanced sampling and the simulated annealing methods to find minimum energy conformations.”J. Chem. Phys. 95pp. 9277–9286.

    Article  CAS  Google Scholar 

  11. A. Miranker & M. Karplus. (1991) “Functionality maps of binding sites- A multiple copy simultaneous search method.”Proteins 11, pp. 29–34.

    Article  PubMed  CAS  Google Scholar 

  12. R. Czerminski & R. Elber. (1990) “Self-avoiding walk between two fixed points as a tool to calculate reaction paths in large molecular systems.”Int. J. Quant. Chem. S24, pp. 167–186.

    Article  Google Scholar 

  13. F.B. Sheinerman & C.L. Brooks, III. (1998) “Molecular picture of folding of a small alpha/beta protein.”Proc. Natl. Acad. Sci. 95, pp. 1562–1567.

    Article  PubMed  CAS  Google Scholar 

  14. E.M. Boczko & C.L. Brooks, III.(1995) “First-principles calculation of the folding free energy of a three-helix bundle protein.”Science 269, pp. 393–396.

    Article  PubMed  CAS  Google Scholar 

  15. A.D. MacKerell, Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, S., J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus (1998) All-atom empirical potential for molecular modeling and dynamics Studies of proteinsJ. Phys. Chem.[in press].

    Google Scholar 

  16. A.D. MacKerell, Jr., J. Wiorkiewicz-Kuczera & M. Karplus (1995). “An all-atom empirical energy function for the simulation of nucleic acids.”J. Amer. Chem. Soc. 117,pp. 11946–11975.

    Google Scholar 

  17. D.C. Chatfield, A. Szabo & B.R. Brooks. (1998) “Molecular dynamics of Staphylococcal nuclease: Comparison of simulation with 15N and 13C NMR relaxation data.”J. Amer. Chem. Soc.[in press].

    Google Scholar 

  18. N. Tjandra, S.E. Feller, R.W. Pastor & A. Bax. (1995) “Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation.”J. Amer. Chem. Soc. 117,pp. 12562–12566.

    Article  CAS  Google Scholar 

  19. D.C. Chatfield, K.P Eurenius & B.R. Brooks. (1998) “HIV-1 protease cleavage mechanism: A theoretical investigation based on classical MD simulation and reaction path calculations using a hybrid QM/MM potential.”Theochem- J. Mol. Struct.423, pp. 79–92.

    Article  CAS  Google Scholar 

  20. K.P. Eurenius, D.C. Chatfield, B.R. Brooks & M. Hodoscek. (1996) “Enzyme mechanisms with hybrid quantum and molecular mechanical potentials. 1. Theoretical considerations.” Int. J. Quant. Chem. 60, pp. 1189–1200.

    Article  CAS  Google Scholar 

  21. Y.S. Lee, M. Hodoscek, B.R. Brooks, P.F. Kador. (1998) Catalytic mechanism of aldose reductase by the combined potential of quantum mechanics and molecular mechanicsBiophysical Chemistry 70pp. 203–216.

    Article  PubMed  CAS  Google Scholar 

  22. .D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, C.V. Packer. (1995) Beowulf: A parallel workstation for scientific computation Proceedings,International Conference on Parallel Processing,available also at http://cesdis.gsfc.nasa.gov/beowulf/papers.html

  23. A.F. Bakker, G.H. Gilmer, M.H. Grabow, K. Thompson (1990) A special purpose computer for molecular dynamics calculationsJ. Comp. Phys. 90, pp. 313–335.

    Article  CAS  Google Scholar 

  24. R. Fine, G. Dimmler, C. Levinthal (1991) FASTRUN: A special purpose, hardwired computer for molecular simulationsProteins 11, pp. 242–253.

    Article  PubMed  CAS  Google Scholar 

  25. T. Ebisuzaki, J Makino, T. Fukushige, M. Taiji, D. Sugimoto, T. Ito, S.K. Okumura (1993) GRAPE Project: An OverviewPubis. Astron. Soc. Japan45, pp. 269–278.

    Google Scholar 

  26. M. Taiji, T. Fukushige, J. Makino, T. Ebisuzaki, D. Sugimoto, (1994) MD-GRAPE: A parallel special-purpose computer system for classical molceular dynamics simulationsPhysics Computing ‘8.4Lugano, Switzerland, in Proceedings of the 6 t h Joint EPS-APS international conference on Physics ComputingEuropean Physical Society, Genava, pp. 200–203.

    Google Scholar 

  27. Y. S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, B. R. Brooks, (1995) Parallelizing Molecular Dynamics Programs for Distributed Memory Machines.IEEE: Computational Science & Engineering2, pp. 18–29

    Article  CAS  Google Scholar 

  28. B. R. Brooks, M. Hodoscek, (1992), Parallelization of CHARMM for MIMD MachinesChemical Design Automation News 7(12)pp. 16–22

    Google Scholar 

  29. P. J. Steinbach, B. R. Brooks, (1993) Protein Hydration Elucidated by Molecular Dynamics SimulationProc. Natl. Acad. Sci. 90pp. 9135–9139

    Article  PubMed  CAS  Google Scholar 

  30. . http://www.linux.org

  31. Seehttp://www.ki.si/parallel/summary.html for details about the type memory CPU clock speeds of various machines.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hodošček, M., Billings, E.M., Cheatham, T.E., Brooks, B.R. (2001). High Performance Computing in Biophysics: Recent Experiences and Developments of Charmm. In: Ebisuzaki, T., Makino, J. (eds) New Horizons of Computational Science. Astrophysics and Space Science Library, vol 263. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0864-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0864-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3848-5

  • Online ISBN: 978-94-010-0864-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics