The Structure of Force-Free Magnetic Fields

Conference paper


Incontrovertible evidence is presented that the force-free magnetic fields exhibit strong stochastic behavior. Arnold’s solution is given with the associated first integral of energy, A subset of the solution is shown to be non-ergodic whereas the full solution is shown to be ergodic. The first integral of energy is applied to the study of these fields to prove that the equilibrium points of such magnetic configurations are saddle points. Finally, the potential function of the first integral of energy is shown to be a member of the Helmholtz family of solutions. Numerical results corroborate the theoretical conclusions and demonstrate the robustness of the energy integral, which remains constant for arbitrarily long computing times.


Equilibrium Point Saddle Point Solar Phys Helmholtz Equation Magnetic Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, V. I.: 1965, Comptes Rend. Acad. Sci., Paris 261, 17.Google Scholar
  2. Bartle, R. G: 1976, The Elements of Real Analysis, John Wiley & Sons, New York, p. 379.zbMATHGoogle Scholar
  3. Birkhoff, G.: 1966, Dynamical Systems, American Mathematical Society, Vol. 106.Google Scholar
  4. Chandrasekhar, S.: 1956a, Proc. Natl. Acad. Sci. 42, 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. Chandrasekhar, S.: 1956b, Astrophys. J. 126, 232.MathSciNetADSCrossRefGoogle Scholar
  6. Chandrasekhar, C. and Kendall, P. C.: 1957, Astrophys. J. 126, 457.MathSciNetADSCrossRefGoogle Scholar
  7. Chandrasekhar, S. and Woltjer, L.: 1958, Proc. Natl. Acad. Sci. 44, 285.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Chintsin, A. J.: 1964, Mathematische Grundlagen der Statistischen Mechanik, Bibliographisches Institut, Mannheim.Google Scholar
  9. Démoulin, P.; 1999, J. Atmospheric Solar-Termst. Phys. 61, 101.ADSCrossRefGoogle Scholar
  10. Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr A., and Soward, A. M.: 1986, J. Fluid. Mech. 167, 353. After submitting our paper we discovered this paper with results similar to Equation (33).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. Ferrar, W. L.: 1957, Algebra, Oxford University Press, Oxford, p. 148.zbMATHGoogle Scholar
  12. Golub, L. and Pasachoff, J. M.; 1997, The Solar Corona, Cambridge University Press, Cambridge.Google Scholar
  13. Hansen, W. W.: 1935, Phys. Rev, 47, 139.ADSCrossRefGoogle Scholar
  14. Hénon, M.; 1966, Comptes Rend. Acad. Sci., Paris 262, 312.Google Scholar
  15. Jahnke, E. and Emde, F.: 1945, Tables of Functions, Dover Publications, New York, p. 168.zbMATHGoogle Scholar
  16. Landau, L. D. and Lifshitz, E. M.: 1993, Fluid Mechanics, Pergamon Press, Oxford, p. 13.Google Scholar
  17. Lüst, R. and Schlüter, A.: 1954, Z. Astrophys. 34, 263.MathSciNetzbMATHGoogle Scholar
  18. Poletto, G., Vaiana, G. S., Zombeck, M. V., Krieger, A. S., and Timothy, A. F.: 1975, Solar Phys. 44, 83.ADSCrossRefGoogle Scholar
  19. Priest, E. R.; 1984, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  20. Taylor, J. B.; 1986, Rev. Mod. Phys. 58, 741.ADSCrossRefGoogle Scholar
  21. Woltjer, L.: 1958, Proc. Natl Acad. Sci. 44, 489, 833.MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Zirker, J. B., Martin, S. F., Harvey, K., and Gaizauskas, V.: 1997, Solar Phys. 175, 27.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Centre for Physics and MathematicsVolosGreece
  2. 2.Department of Pure and Applied PhysicsQueen’s UniversityBelfastUK

Personalised recommendations