New Boundary Integral Equation Representation for Finite Energy Force-Free Magnetic Fields in Open Space above the Sun

  • Yihua Yan
  • Takashi Sakurai
Conference paper

Abstract

A boundary integral equation to describe a force-free magnetic field with finite energy content in the open space above the solar surface is found. This is a new representation for a 3-D nonlinear force-free field in terms of the boundary field and its normal gradient at the boundary. Therefore the magnetic field observed on the solar surface can be incorporated into the formulation directly and a standard numerical technique, the boundary element method, can be applied to solve the field. A numerical test case demonstrates the power of the method by recovering the analytical solution to the desired accuracy and its application to practical solar magnetic field problems is straightforward and promising.

Keywords

Permeability Flare Assure Nite ARsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, J. J.; 1987, in R. Beck and R. Gräve (eds.), Interstellar Magnetic Fields, Springer-Verlag, Berlin, p. 240.CrossRefGoogle Scholar
  2. Aly, J. J.: 1989, Solar Phys. 120, 19.ADSCrossRefGoogle Scholar
  3. Arfken, G.: 1966, Mathematical Methods for Physicists, Academic Press, New York.MATHGoogle Scholar
  4. Brebbia, C. A., Telles, J. C. F., and Wrobel, L. C.: 1984, Boundary Element Techniques, Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  5. Chandrasekhar, S.: 1961, Hydmdynamic and Hydromagnetic Stability, Oxford University Press, London.Google Scholar
  6. Courant, R. and Hilbert, D.: 1962, Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York.MATHGoogle Scholar
  7. Harrington, R. F.: 1961, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York.Google Scholar
  8. Hu, W.: 1987, Cosmical Magnetohydrodynamics, Science Press, Beijing (in Chinese).Google Scholar
  9. Klimchuk, J. A. and Sturrock, P. A.: 1992, Astrophys. J. 3S5, 344.ADSCrossRefGoogle Scholar
  10. Krall, K. R., Smith, J. B., Jr., Hagyard, M. J., West, E. A., and Cumings, N. O.: 1982, Solar Phys. 79, 59.ADSCrossRefGoogle Scholar
  11. Low, B. C: 1982, Solar Phys. 77, 43.ADSCrossRefGoogle Scholar
  12. Low, B. C. and Lou, Y. Q.: 1990, Astrophys. J. 352, 343.ADSCrossRefGoogle Scholar
  13. McClymont, A. N., Jiao, L., and MiMć, Z.: 1997, Solar Phys. 174, 191.ADSCrossRefGoogle Scholar
  14. Metcalf, T. R., Jiao, L., McClymont, A. N., Canfield, R. C., and Uitenbroek, H.: 1995, Astrophys. J. 439, 474.ADSCrossRefGoogle Scholar
  15. Mikić, Z. and McClymont, A. N.: 1994, in K. S. Balasubramaniam and G. Simon (eds.), Solar Active Region Evolution: Comparing Models with Observations, A.S.R Conf. Proa, San Francisco, p. 225.Google Scholar
  16. Roumeliotis, G.: 1996, Astrophys. J. 473, 1095.ADSCrossRefGoogle Scholar
  17. Sakurai, T.: 1981, Solar Phys. 69, 343.ADSCrossRefGoogle Scholar
  18. Sakurai, T.: 1989, Space Sci. Rev. 51, 11.ADSGoogle Scholar
  19. Schmahl, E. J., Kundu, M. R., Strong, K. T., Bentley, R. D., Smith, J. B., Jr., and Krall, K. R.: 1982, Solar Phys. 80, 233.ADSCrossRefGoogle Scholar
  20. Stratton, J. A.: 1941, Electromagnetic Theory, McGraw-Hill, New York.MATHGoogle Scholar
  21. Wang, H. N., Yan, Y., and Sakurai T.: 2000, Solar Phys. submitted.Google Scholar
  22. Wu, S. T., Sun, M. T., Chang, H. M., Hagyard, M. J., and Gary, G. A.; 1990, Astrophys. J. 362, 698.ADSCrossRefGoogle Scholar
  23. Yan, Y. and Sakurai T.; 1997, Solar Phys. 174, 65.ADSCrossRefGoogle Scholar
  24. Yan, Y, Yu, Q., and Shi, H.; 1993, in H. Kane, G. Maier, N. Tosaka and S. N. Atluri (eds.), Advances in Boundary Element Techniques, Springer-Verlag, Berlin, p. 447.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Yihua Yan
    • 1
  • Takashi Sakurai
    • 2
  1. 1.Beijing Astronomical ObservatoryChinese Academy of SciencesBeijingChina
  2. 2.National Astronomical ObservatoryMitaka, Tokyo 181Japan

Personalised recommendations