SECIS: The Solar Eclipse Coronal Eclipse Imaging System

Conference paper


The Solar Eclipse Coronal Imaging System (SECIS) is an instrument designed to search for short-period modulations in the solar corona seen either during a total eclipse or with a corona-graph. The CCD cameras used in SECIS have the capability of imaging the corona at a rate of up to 70 frames a second, with the intensities in each pixel digitised in 12-bit levels. The data are captured and stored on a modified PC. With suitable optics it is thus possible to search for fast changes or short-period wave motions in the corona that will have important implications for the coronal heating mechanism. The equipment has been successfully tested using the Evans Solar Facility coronagraph at National Solar Observatory/Sacramento Peak and during the 11 August 1999 eclipse at a site in north-eastern Bulgaria. The instrument is described and preliminary results are outlined.


Solar Phys Solar Eclipse Planetary Gear Coronal Structure Optical Bench 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dermendjiev, V. N., Mishev, D. I., Tsanev, V. I., and Popov, G. K.: 1998, in Advances in Solar Physics Euroconference, ASP Conference Series 155, 403.ADSGoogle Scholar
  2. Espenak, F., and Anderson, J.: 1997, Total Solar Eclipse of 1999 August 11, NASA Ref. Publ. 1383.Google Scholar
  3. Hollweg, J.:1981. Solar Phys. 70, 25.Google Scholar
  4. Koutchmy, S., Zugzda, Y. D., and Locans, L.: 1983, Astron. Astmphys. 120, 185.ADSGoogle Scholar
  5. Koutchmy, S. et al.: 1994, Astmn. Astmphys. 281, 249.ADSGoogle Scholar
  6. Parker, E. N.: 1988, Astmphys. J. 330, 474.ADSCrossRefGoogle Scholar
  7. Pasachoff, J. M.: 1997, in Mouradian and Stavinschi (eds), Theoretical and Observational Problems Related to Solar Eclipses, Kluwer Academic Publishers, Dordrecht, p. 181.CrossRefGoogle Scholar
  8. Pasachoff, J. M. and Ladd, E. F.: 1987, Solar Phys. 109, 365.ADSCrossRefGoogle Scholar
  9. Pasachoff, J. M. and Landman, D. A.: 1984, Solar Phys. 90, 325.ADSCrossRefGoogle Scholar
  10. Pasachoff, J. M. and Livingston, W.: 1984, Appl. Optics 23, 2803.ADSCrossRefGoogle Scholar
  11. Phillips, K. J. H.: 1995, Guide to the Sun, Ch. 5, Cambridge University Press, Cambridge.Google Scholar
  12. Porter, L. J., Klimchuk, J. A., and Sturrock, P. A.; 1994, Astmphys. J. 435, 482.ADSCrossRefGoogle Scholar
  13. Rušin, V., and Minarovjech, M.: 1994, IAU Symp. 144, 487.Google Scholar
  14. Shimizu, T., Acton, L.W., Tsuneta, S., Lemem, J.R., and Uchida, Y: 1992, Publ. Astmn. Soc. Japan 44, L147.ADSGoogle Scholar
  15. Singh, J. et al.: 1997, Solar Phys. 170, 235.ADSCrossRefGoogle Scholar
  16. Smartt, R. N., Zhang, Z., and Smutko, M. E.: 1993, Solar Phys. 148, 139.ADSCrossRefGoogle Scholar
  17. Smith, J. M., Roberts, B., and Oliver, R.: 1997, Astmn. Astmphys. 327, 377.ADSGoogle Scholar
  18. Stenborg, G., Schwen, R., Srivastava, N., Inhester, B., Podlipnik, B., Rovira, M., and Francile, C.: 1998, private communication.Google Scholar
  19. Vial, J.-C., Koutchmy, S., and the CFHT Team.: 1992, ESA SP-344, p. 87.Google Scholar
  20. Wood, B. E., Karovska, M., Cook, J. W., Braeckner, G. E., Howard, R. A., Korendyke, C. M., and Socker, D. G.: 1998, Astmphys. J. 505, 432.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Space Science DepartmentRutherford Appleton LaboratoryChilton, Didcot, OxonUK
  2. 2.Department of PhysicsQueen’s University BelfastBelfastN. Ireland, UK
  3. 3.Astronomical InstituteUniversity of WrocławWrocławPoland
  4. 4.Department of Physics and AstronomyUniversity College LondonLondonUK
  5. 5.JET Joint UndertakingAbingdon, Oxon.UK
  6. 6.National Solar Observatory/Sacramento PeakUSA
  7. 7.Williams CollegeWilliamstownUSA

Personalised recommendations