A Kinetic Model of Coronal Heating and Acceleration by Ion-Cyclotron Waves: Preliminary Results

Conference paper


We present a kinetic model of the heating and acceleration of coronal protons by outward-propagating ion-cyclotron waves on open, radial magnetic flux tubes. In contrast to fluid models which typically insist on bi-Maxwellian distributions and which spread the wave energy and momentum over the entire proton population, this model follows the kinetic evolution of the collisionless proton distribution function in response to the combination of the resonant wave-particle interaction and external forces. The approximation is made that pitch-angle scattering by the waves is faster than all other processes, resulting in proton distributions which are uniform over the resonant surfaces in velocity space. We further assume, in this preliminary version, that the waves are dispersionless so these resonant surfaces are portions of spheres centered on the radial sum of the Alfvén speed and the proton bulk speed. We incorporate the fact that only those protons with radial speeds less than the bulk speed will be resonant with outward-propagating waves, so this rapid interaction acts only on the sunward half of the distribution. Despite this limitation, we find that the strong perpendicular heating of the resonant particles, coupled with the mirror force, results in substantial outward acceleration of the entire distribution. The proton distribution evolves towards an incomplete shell in velocity space, and appears vastly different from the distributions assumed in fluid models. Evidence of these distinctive distributions should be observable by instruments on Solar Probe.


Velocity Space Resonant Wave Fast Solar Wind Proton Distribution Resonant Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axford, W. I. and McKenzie, J. R: 1996, in D. Winterhalter, J. T. Gosling, S. R. Habbai, W. S. Kurth and M. Neugebauer (eds.), Solar Wind Eight, AIP, Woodbury, NY, p. 72.Google Scholar
  2. Cranmer, S. R., Field, G. B., and Kohl, J. L.: 1999, Astmphys. J. 518, 937.ADSCrossRefGoogle Scholar
  3. Cranmer, S. R., Field, G. B., Noci, G., and Kohl, J. L.: 1997, in A. Wilson (ed.), Correlated Phenomena at the Sun, in the Heliosphere, and in Geospace, ESA, Noordwijk, p. 89.Google Scholar
  4. Dusenbery, P. B. and Hollweg, J. V.: 1981, J. Geophys. Res. 86, 153.ADSCrossRefGoogle Scholar
  5. Esser, R., Habbal, S. R., Coles, W. A., and Hollweg, J. V.: 1997, J. Geophys. Res. 102, 7063.ADSCrossRefGoogle Scholar
  6. Esser, R., Fineschi, S., Dobrzycka, D., Habbal, S. R., Edgar, R. J., Raymond, J. C, Kohl, J. L., and Guhathakurta, M.: 1999, Astmphys. J. 510, L63.ADSCrossRefGoogle Scholar
  7. Hollweg, J. V.: 1973, Astmphys. J. 181, 547.ADSCrossRefGoogle Scholar
  8. Hollweg, J. V.: 1986, J. Geophys. Res. 91, 4111.ADSCrossRefGoogle Scholar
  9. Hollweg, J. V.: 1999a, J. Geophys. Res. 104, 505.ADSCrossRefGoogle Scholar
  10. Hollweg, J. V.: 1999b, J. Geophys. Res. 104, 24,781.ADSCrossRefGoogle Scholar
  11. Hollweg, J. V.: 1999c, J. Geophys. Res. 104, 24,793.ADSCrossRefGoogle Scholar
  12. Hollweg, J. V. and Johnson, W: 1988, J. Geophys. Res. 93, 9547.ADSCrossRefGoogle Scholar
  13. Isenberg, P. A.: 1990, J. Geophys. Res. 95, 6437.ADSCrossRefGoogle Scholar
  14. Isenberg, P. A.: 1997, J. Geophys. Res. 102, 4719.ADSCrossRefGoogle Scholar
  15. Isenberg, P. A. and Lee, M. A.: 1996, J. Geophys. Res. 101, 11,055.ADSCrossRefGoogle Scholar
  16. Kennel, C. F. and Engelmann, F.: 1966, Phys. Fluids 9, 2377.ADSCrossRefGoogle Scholar
  17. Kohl, J. L., Noci, G., Antonucci, E., Tondello, G., Huber, M. C. E., Cranmer, S. R., Strachen, L., Panasyuk, A. V. et al.: 1998, Astmphys. J. 501, LI27.Google Scholar
  18. Kohl, J. L., Esser, R., Cranmer, S. R., Fineschi, S., Gardner, L. D., Panasyuk, A. V., Strachen, L., Suleiman, R. M. et al.: 1999, Astmphys. J. 510, L59.ADSCrossRefGoogle Scholar
  19. Kulsrud, R. M.: 1983, in A. A. Galeev and R. N. Sudan (eds.), Basic Plasma Physics I, North-Holland, New York, pp. 115–145.Google Scholar
  20. Li, X.: 1999, J. Geophys. Res. 104, 19,773.ADSCrossRefGoogle Scholar
  21. Li, X., Habbal, S. R., Hollweg, J. V., and Esser, R.: 1999, J. Geophys. Res. 104, 2521.ADSCrossRefGoogle Scholar
  22. Marsch, E. and Tu, C.-Y: 1997, Astron. Astmphys. 319, L17.ADSGoogle Scholar
  23. McKenzie, J. F., Banaszkiewicz, M., and Axford, W. I.: 1995, Astmn. Astmphys. 303, 45.ADSGoogle Scholar
  24. Olsen, E. L. and Leer, E.: 1999, J. Geophys. Res. 104, 9963.ADSCrossRefGoogle Scholar
  25. Rowlands, J., Shapiro, V. D., and Shevchenko, V. I.: 1966, Soviet Phys. JETP 23, 651.ADSGoogle Scholar
  26. Skilling, J.: 1971, Astmphys. J. 170, 265.ADSCrossRefGoogle Scholar
  27. Tam, S. W. Y. and Chang, T: 1999, Geophys. Res. Lett. 26, 3189.ADSCrossRefGoogle Scholar
  28. Tu, C.-Y. and Marsch, E.: 1997, Solar Phys. 171, 363.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Department of Physics and Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamUSA

Personalised recommendations