Skip to main content

Electro-Mechanical Coupling Between the Photosphere and Transition Region

  • Conference paper
  • 214 Accesses

Abstract

We study the response of the chromosphere and transition region to dynamic changes in the photospheric network magnetic fields. We present results from simultaneous measurements taken by TRACE in chromospheric and transition region (CIV) images, high-resolution magnetograms taken by MDI, and spectra of chromospheric (CII) and transition region lines (Ovi) obtained with the SUMER instrument on SOHO. Enhanced emission in the CIV line is generally co-spatial with the magnetic pattern in the photosphere. We propose a mechanism of electro-mechanical coupling between the photosphere and upper layers of atmosphere based on hydrodynamic cumulation of energy produced by reconnecting flux tubes in the photosphere/chromosphere region (Tarbell et al., 1999). We believe that a basic process causing energetic events is the cascade of shock waves produced by colliding and reconnecting flux tubes. The continuous supply of flux tubes in the ‘magnetic carpet’ ensures the ubiquitous nature of this process and its imprint on the upper atmosphere. The appearance of bright transients often, but not always, correlates with canceling mixed polarity magnetic elements in the photosphere. In other cases, transients occur in regions of unipolar flux tubes, suggesting reconnection of oblique components. Transients arc also seen in regions with no fields detected with the MDI sensitivity; these may be reconnections of tiny features with diameters less than 100 km. Blinkers and other bright transients are often accompanied by two directional plasma jets. These may be generated by cylindrical self-focusing of shock fronts or by collision of shocks produced by neighboring reconnection processes. The observations suggest that stronger emissions correspond to lower velocity jets, and vice versa; this property is a natural consequence of the proposed mechanism. Plasma flows are always seen whenever the slit crosses strong magnetic flux tubes or vertices of converging flows in the supergranular network. The overall energy distribution between heating and plasma flows is an intrinsic feature of our mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, T. and Title, A.: 1996, Astmpkys. J. 463, 365.

    ADS  Google Scholar 

  • Berger, T. E., De Pontieu, B., Schrijver, C. J., and Tide, A. M.: 1999, Astrophys. J. 519, L97.

    Article  ADS  Google Scholar 

  • Brekke, P., Hassler, D. M., and Wilhelm, K.: 1997, Solar Phys. 175, 349.

    Article  ADS  Google Scholar 

  • Coppi, B., Rosenbluth, M. N., and Sudan, R.: 1969, Ann. Phys. 55, 201.

    ADS  Google Scholar 

  • Dere, K. P.: 1994, Space Sci Rev. 70,21.

    Article  ADS  Google Scholar 

  • Dere, K. P., Bartoe, J.-D. F., and Braeckner, G. E.: 1989, Solar Phys. 123, 4L

    Article  Google Scholar 

  • Dere, K. P., Bartoe, J.-D. F., Braeckner, G. E., Cook, J. W., and Socker, D. G.: 1918, Solar Phys. 114, 223.

    Article  ADS  Google Scholar 

  • Dikasov, V. M., Rudatew, L. I., and Ryutov, D. D.: 1965, Soviet Phys. JETP, 21,1965.

    Google Scholar 

  • Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., and Morris, H. C.: 1982, Solitons and Nonlinear Wave Equations, Academic Press, London.

    MATH  Google Scholar 

  • Guderley, G.: 1942, Luftfahrtforschung 19, 302–312.

    MathSciNet  Google Scholar 

  • Handy, B. N., Iraner, M. E., Tarbell, T. D., Title, A. M., Wolfson, C. J., Laforge, M. J., and Oliver, J.J.: 1998, Solar Phys. 183, 29.

    Article  ADS  Google Scholar 

  • Harrison, R. A. et al.: 1997, Solar Phys. 170, 123.

    Article  ADS  Google Scholar 

  • Harvey, K. and Harvey, J.: 1973, Solar Phys. 28, 61.

    Article  ADS  Google Scholar 

  • Innes, D. E., Brekke, P., Germerott, D., and Wilhelm, K.: 1997, Solar Phys. 175, 341.

    Article  ADS  Google Scholar 

  • Kadomtsev, B. B., Mikhailovski, A. B., and Timofeev, A. V.: 1964, Soviet Phys. JETP 20, 1517.

    Google Scholar 

  • Kjeldseth-Moe, O., Brynildsen, N., Brekke, P., Engvold, O., Maltby, P., Bartoe, J.-D. F., Brueckner, G. E., Cook, J. W., Dere, K. P., and Socker, D. G.: 1988, Astrophys. J. 334, 1066.

    Article  ADS  Google Scholar 

  • Kjeldseth-Moe, O., Brynildsen, N., Brekke, P., and Maltby, P.: 1994, Space Sci. Rev. 70, 89.

    Article  ADS  Google Scholar 

  • Landau, L. D. and Lifshits, E. M.: 1987, Fluid Mechanics, Pergamon Press, Oxford.

    MATH  Google Scholar 

  • Mariska, J. T.: 1992, The Solar Transition Region, Cambridge University Press, Cambridge.

    Google Scholar 

  • Moses, D. et al.: 1994, Astrophys. J. 430, 913.

    Article  ADS  Google Scholar 

  • Ostrovski, L. A., Rybak, S. A., and Tsimring, L. Sh.: 1986, Soviet Phys. Usp. 29, 1040.

    Article  ADS  Google Scholar 

  • Petschek, H. E.: 1964, NASA Spec. Puhl., SP-50, p. 425.

    ADS  Google Scholar 

  • Petviashvili, V. and Pokhotelov, O.: 1992, Solitary Waves in Plasmas and in the Atmosphere, Gordon and Breach, Philadelphia, PA.

    MATH  Google Scholar 

  • Ryutova, M. P.: 1988, Soviet Phys. JETP, 67, 1594.

    Google Scholar 

  • Ryutova, M. and Sakai, J.: 1993, JETP Lett. 58, 507.

    ADS  Google Scholar 

  • Ryutova, M. P. and Habbal, S. R.: 1995, Astrophys. J. 451, 381.

    Article  ADS  Google Scholar 

  • Ryutova, M., Shine, R., Title, A., and Sakai, J. I.: 1998, Astrophys. J. 492, 402.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. et al.: Solar Phys. 187, 261.

    Google Scholar 

  • Sturrock, P. A.: 1960, J. Appl. Phys. 31, 2052.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sturrock, P. A.: 1966, Phys. Rev. Lett. 16, 270.

    Article  ADS  Google Scholar 

  • Tarbeil, T., Ryutova, M., Covington, J., and Fludra, A.: 1999, Astrophys. J. 514, L47.

    Article  ADS  Google Scholar 

  • Title, A. M. and Schrijver, C. J.: 1997, in R. Donahue and J. A. Bookbinder (eds.), Cool Stars, Stellar Systems, and the Sun, Astron. Soc. of the Pacific Conf. Series.

    Google Scholar 

  • Wikstol, O. et al.: 1997, in A. Wilson (ed.), Proc. of 5th SOHO Workshop, The Corona and Solar Wind near Minimum Activity, ESA SP-404, ESA, Noordwijk, p. 733.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tarbell, T.D., Ryutova, M., Shine, R. (2001). Electro-Mechanical Coupling Between the Photosphere and Transition Region. In: Engvold, O., Harvey, J.W. (eds) Physics of the Solar Corona and Transition Region. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0860-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0860-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3846-1

  • Online ISBN: 978-94-010-0860-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics