Skip to main content

Nano- and Microstructural Features in CVD Diamond Growth

  • Conference paper
Nanostructured Carbon for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 24))

Abstract

Early growth stage of CVD diamond is considered emphasizing the importance the substrate seeding with nanometric diamond for high nucleation rate and deposition of thin conformai films on flat and intricate surfaces. Structural aspects of the films are characterized with TEM and Raman analysis. The data on thermal conductivity and stability of polycrystalline diamond at high temperatures are given, and the role of grain boundaries is considered. Shaping of CVD diamond by a molding technique is described. The examples of growth of micron-scale pyramids, gratings, spheres, as well as making holes with extremely high aspect ratio are presented. Synthesis of “diamond opal” — a three-dimensional diamond replica of periodic porous opal illustrates the unique capability of the molding transfer method. Potential applications of mictrostructured diamond in optics and field emission are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angus, J.C. (1989) History and current status of diamond growth at metastable conditions, in Proc. of the 1 Int. Symp. on Diamond and Diamond-Like Films, The Electrochemical Soc. 89-12, pp. 1–8.

    Google Scholar 

  2. DeVries, R.C., Badzian, A. and Roy, R. (1996) Diamond synthesis: the Russian connection, MRS Bulletin 21, No.2, 65–75.

    Google Scholar 

  3. Goodwin, D.G. and Butler, J.E. (1997) Theory of diamond chemical vapor deposition, in Handbook of Industrial Diamonds and Diamond Films, ed. by M. Prelas, G. Popovici and L. Bigelow, Marcel Dekker, New York, pp. 527–581.

    Google Scholar 

  4. Gruen, D.M. (1999) Nanocrystalline diamond films, Ann. Rev. Mater. Sci. 29, 211–259.

    Article  ADS  Google Scholar 

  5. G. Davies (ed), (1994) Properties and growth of diamond, INSPEC, London, Chapter 11.

    Google Scholar 

  6. Iijima, S., Aikawa, Y. and Baba, K. (1991) Appl. Phys. Lett. 57, 2646.

    Article  ADS  Google Scholar 

  7. Smolin, A.A., Ralchenko, V.G., Pimenov, S.M., Kononenko, T.V. and Loubnin, E.N. (1993) Optical monitoring of nucleation and growth of diamond films, Appl. Phys. Lett. 62, 3449–3451.

    Article  ADS  Google Scholar 

  8. Konov, V.I., Smolin, A.A., Ralchenko, V.G., Pimenov, S.M., Obraztsova, E.D., Loubnin, E.N., Metev, S.M. and Sepold, G. (1995) DC arc plasma deposition of smooth nanocrystalline diamond films, Diamond and Related Materials 4, 1073–1078.

    Article  ADS  Google Scholar 

  9. Ralchenko, V., Smolin, A., Vlasov, I., Karabutov, A., Frolov, V., Konov, V. Gordeev, S. and Zhukov, S. (1998) Diamond film deposition on carbon nanocomposites, Molecular Materials 11, 143–148.

    Google Scholar 

  10. Ralchenko, V., Karabutov, A., Vlasov, I., Frolov, V., Konov, V., Gordeev, S., Zhukov, S. and Dementjev, A. (1999) Diamond/carbon nanocomposites: applications for diamond film deposition and field electron emission, Diamond and Related Materials 8, 1496–1501.

    Article  ADS  Google Scholar 

  11. Ralchenko, V.G., Pimenov, S.M., Pereverzev, V.G., Vlasov, I.I., Lavrischev, S.V., Obraztsova, E.D., Konov, V.I., Shorokhov, E.V., Lebedev, D.M., Lebedev, M.A., Vodolaga, B.K., Loubnin, E.N. and Spivak, V.A. (1997) Chemical vapor deposition of diamond films on diamond compacts, in M.A. Prelas et al. (eds), Diamond Based Composites, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, pp. 39–52.

    Chapter  Google Scholar 

  12. Yugo, S., Kanai, T. and Kimura, T. (1992) A new method for generation of diamond nuclei by plasma CVD, Diamond and Related Materials 1, 388–391.

    Article  ADS  Google Scholar 

  13. Floter, A., Guttler, H., Schulz, G., Steinbach, D., Lutz-Elsner, C., Zachai, R., Bergmaier, A. and Dollinger, G. (1998) The nucleation and growth of large area, highly oriented diamond films on silicon substrates, Diamond and Related Materials 7, 283–288.

    Article  ADS  Google Scholar 

  14. Nistor, L.C., Van Landuyt, J., Ralchenko, V.G., Smolin, A.A., Korotushenko, K.G. and Obraztsova, E.D. (1997) Structural studies of diamond thin films grown from d.c. arc plasma, J. Mater. Res. 12, 2533–2542.

    Article  ADS  Google Scholar 

  15. Ralchenko, V.G., Korotoushenko, K.G., Smolin, A.A. and Konov, V.I. (1994) Patterning of diamond films by direct laser writing: selective-area deposition, chemical etching and surface smoothing, in S. Saito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi and M. Yoshikawa (eds), Advances in New Diamond Science and Technology, MYU, Tokyo, pp. 493–496.

    Google Scholar 

  16. Angus, J.C, Sunkara, M., Sahaida, S.R. and Glass, J.T. (1992) J. Mater. Res. 7, 3001.

    Article  ADS  Google Scholar 

  17. Nistor, L.C., Van Landuyt, J., Ralchenko, V.G., Obraztsova, E.D. and Smolin, A.A. (1997) Nanocrystalline diamond films: transmission electron microscopy and Raman spectroscopy characterization, Diamond and Related Materials 6, 159–168.

    Article  ADS  Google Scholar 

  18. Obraztsova, E.D. (1994) Raman diagnostics of silicon and carbon, in G.C. Hadjipanayis and R.W. Siegel (eds), Nanophase Materials: Synthesis-Properties-Applications, NATO ASI Ser. E: Appl. Sci., Vol. 260, Kluwer, Dordrecht, pp.483–493

    Google Scholar 

  19. Ferrari, A. (2000) Raman scattering as a probe of sp2 nanostructure and quantity in carbon films, paper presented at NATO ASI Nanostructured Carbon for Advanced Applications, Erice, 19-31 July 2000.

    Google Scholar 

  20. Knight, D.S. and White, W.B. (1989) Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4, 385–393.

    Article  ADS  Google Scholar 

  21. Bergman, L., McClure, M.T., Glass, J. and Nemanich, R.J. (1994) J. Appl. Phys. 76, 3020.

    Article  ADS  Google Scholar 

  22. Locher, R., Wild, C., Herres, N., Behr, D. and Koidl, P. (1994) Appl. Phys. Lett. 65, 34.

    Article  ADS  Google Scholar 

  23. Graebner, J.E., Mucha, J.A. and Baiocci, F.A. (1996) Sources of thermal resistance in chemically vapor deposited diamond, Diamond and Related Materials 5, 682–687.

    Article  ADS  Google Scholar 

  24. Graebner, J., Ralchenko, V.G., Smolin, A.A., Obraztsova, E.D., Korotushenko, K.G., and Konov, V.I. (1996) Thermal conductivity of thin diamond films grown from d.c. discharge, Diamond and Related Materials 5, 693–698.

    Article  ADS  Google Scholar 

  25. Bertolotti, M., Liakhou, G.L., Ferrari, A., Ralchenko, V.G., Smolin, A.A., Obraztsova, E., Korotoushenko, K.G., Pimenov, S.M. and Konov, V.I. (1994) Measurements of thermal conductivity of diamond films by photothermal deflection technique, J. Appl. Phys. 75, 7795–7798.

    Article  ADS  Google Scholar 

  26. Coe, S.E. and Sussmann, R.S. (2000) Optical, thermal and mechanical properties of CVD diamond, Diamond and Related Materials 9, 1726–1729.

    Article  ADS  Google Scholar 

  27. Nistor, S.V., Stefan, M, Ralchenko, V., Khomich, A. and Schoemaker, D. (2000) Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates, J. Appl. Phys. 87, 8741–8746.

    Article  ADS  Google Scholar 

  28. Butler, J.E., Vestyck, DJ., Gilmore, A. and Steeds, J.W. (1998) CVD diamond TEM sample preparation by laser machining, in V. Konov and V. Ralchenko (eds), Lasers in Synthesis, Characterization and Processing of Diamond, SPIE Proc. 3484, 129–132.

    Google Scholar 

  29. Nistor, L., Van Landuyt, J., Ralchenko, V. and Vlasov, I. (1999) Structural aspects of CVD diamond wafers grown at different hydrogen flow rates, Physica Status Solidi (a), 174, 5–9.

    Article  ADS  Google Scholar 

  30. Han, S.K., McClure, M.T., Wolden, C.A., Vlahovic, B., Soldi, A. and Sitar, S. (2000) Fabrication and testing of a microstrip particle detector based on highly oriented diamond films, Diamond and Related Materials 9, 1008–1012.

    Article  ADS  Google Scholar 

  31. Khomich, A., Ralchenko, V., Nistor, L., Vlasov, I. and Khmelnitskii, R. (2000) Optical properties and defect structure of CVD diamond films annealed at 900-1600C, Physica Status Solidi (a) 181, 37–44.

    Article  ADS  Google Scholar 

  32. Khomich, A.V., Ralchenko, V.G., Vlasov, A.V., Khmelnitskii, R.A., Vlasov, LI. and Konov, V.I., Effect of high temperature annealing on optical and thermal properties of CVD diamond, Diamond and Related Materials, in press.

    Google Scholar 

  33. Evans, T. (1979) Changes produced by temperature treatment of diamond, in J.E. Field (ed.), The Properties of Diamond, Academic Press, London, pp.403–424.

    Google Scholar 

  34. Johnson, L.G. and Dresselhaus, G. (1973) Optical properties of graphite, Phys. Rev. B7, 2275–2285.

    ADS  Google Scholar 

  35. Efremow, N.N., Geis, M.W., Flanders, D.C., Lincoln G.A. and Economou, N.P. (1985) Ion-beamassisted etching of diamond, J. Vac. Sci. Technol. B3, 416–418.

    Google Scholar 

  36. DeNatale, J.F., Flintoff, J.F. and Harker, A.B. (1991) Effects of interfacial modification on diamond film adhesion, in Diamond Optics IV, SP1E Proc. 1534, 44–48.

    Google Scholar 

  37. Kang, W.P., Davidson, J.L., Howell, M., Bhuva, B., Kinser, D.L., Kerns, D.V., Li, Q. and Xu, J.F. (1996) Micropatterned polycrystalline diamond filed emitter vacuum diode arrays, J. Vac. Sci. Technol. B14, 2068–2071

    Google Scholar 

  38. Hohns, K.C., Wisitsora-at, A., Henderson, T.G., Davidson, J.L., Kang, W.P. and Pilugurta, V. (2000) Microstructures in diamond for “DMEMS”, diamond micro electromechanical systems, in J.L. Davidson et al. (eds), Proc. of the 6 th Int. Symp. on Diamond Materials, The Electrochemical Soc., Pennington, Vol. 99-32, pp. 360–368.

    Google Scholar 

  39. Ralchenko, V.G., Pimenov, S.M., Kononenko, T.V., Korotushenko, K.G., Smolin, A.A., Obraztsova, E.D. and Konov, V.I. (1995), Processing of CVD diamond with UV and green lasers, in A. Feldman, et al. (eds), Proc. 3rd Int. Conf. on Applications of Diamond Films and Related Materials, NIST Spec. Publ. 885, pp. 225–232.

    Google Scholar 

  40. Oesterschulze E., Scholz, W., Mihalcea, Ch., Albert, D., Sobisch, S. and Kulisch, W. (1997) Fabrication of small diamond tips for scanning probe microscopy, Appl. Phys. Lett. 70, 435–437.

    Article  ADS  Google Scholar 

  41. Ralchenko, V. and Pimenov, S. (1997) Diamond processing, in M. Prelas, G. Popovici and L. Bigelow (eds), Handbook of Industrial Diamonds and Diamond Films, Marcel Dekker, New York, pp. 983–1021.

    Google Scholar 

  42. Shikata, S., Nishibayashi, Y., Tomikawa, T., Toda, N. and Fujimori, N. (1993), Microfabrication technique for diamond devices, in M. Yoshikawa et al. (eds), Proc. 2nd Int. Conf. on the Applications of Diamond Films and Related Materials, MYU, Tokyo, pp. 377–380.

    Google Scholar 

  43. Ralchenko, V.G., Kononenko, T.V., Pimenov, S.M., Chernenko, N.V., Loubnin,, E.N., Armeyev, V.Yu. and Zlobin, A.Yu. (1993) Catalytic interaction of Fe, Ni, and Pt with diamond films: patterning applications, Diamond and Related Materials 2, 904–909.

    Article  ADS  Google Scholar 

  44. Jin, S., Graebner, J.E., Tiefel, T.H. and Kammlott, G.W. (1993) Thinning and patterning of CVD diamond by diffusional reaction, Diamond Related Materials 2, 1038–1042.

    Article  ADS  Google Scholar 

  45. Popovici G. and Prelas M.A. (1992) Nucleation and selective deposition of diamond thin films, Physica Status Solidi (a), 132, 233–252.

    Article  ADS  Google Scholar 

  46. Ralchenko, V.G., Smolin, A.A., Korotoushenko, K.G., Nounouparov, M.S., Pimenov, S.M. and Vodolaga, B.K. (1993) A technique for controllable seeding of ultrafine diamond particles for growth and selective-area deposition of diamond films, in M. Yoshikawa et al. (eds), Proc. of the 2nd Int. Conf. on the Applications of Diamond Films and Related Materials, MIU, Tokyo, pp. 475–480.

    Google Scholar 

  47. Okano, K., Hoshina, K., Ida, M., Koizumi, S. and Inuzuka, T. (1994) Fabrication of diamond field emitter array, Appl. Phys. Lett. 64, 2742–2744.

    Article  ADS  Google Scholar 

  48. Ralchenko, V.G., Khomich, A.V., Baranov, A.V., Vlasov, LI. and Konov, V.I. (1999) Fabrication of CVD diamond optics with antireflective surface structures, Physica Status Solidi (a) 174, 171–176.

    Article  ADS  Google Scholar 

  49. Ralchenko, V., Khomich, A., Butvina, L., Vlasov, I., Konov, V., Schirone, L. and Sotgiu, G. (2000) CVD diamond optics with moth-eye antireflective surface structures produced by molding technique, New Diamond and Frontier Carbon Technology 10, 109–119.

    Google Scholar 

  50. Ralchenko, V., Schirone, L., Sotgiu, G., Zakhidov, A., Baughman, R., Khomich, A., Nunuparov, M., Vlasov, I., Frolov, V. and Karabutov, A. (2000) Direct growth of diamond components, in J.L. Davidson et al. (eds), Proc. of the 6 th Int. Symp. on Diamond Materials, The Electrochemical Soc., Pennington, Vol. 99-32, pp. 72–79.

    Google Scholar 

  51. Bjiorkman, H., Rangsten, P., Hollman, P. and Hjort, K. (1999) Diamond replicas from microstructured silicon masters, Sensors and Actuators 73, 20–29.

    Google Scholar 

  52. Bjiorkman, H., Rangsten, P. and Hjort, K. (1999) Diamond microstructures for optical micro electromechanical systems, Sensors and Actuators 78, 41–47.

    Article  Google Scholar 

  53. Woerner, E., Wild, C., Mueller-Sebert, W. and Koidl, P. CVD-diamond optical lenses, Diamond and Related Materials, in press.

    Google Scholar 

  54. Flotter, A., Schaarschmidt, G., Mainz, B., Laufer, S., Deutschmann, S. and Hinneberg, H.-J. (1995), Deposition of diamond on patterned silicon substrates, Diamond Related Materials, 4, 930–935.

    Article  ADS  Google Scholar 

  55. Raguin, D.H. and Morris, G.M. (1993) Antireflective structured surfaces for infrared spectral region, Applied Optics 32, 1154–1167.

    Article  ADS  Google Scholar 

  56. Klemm, K.A., Patterson, H.S., Johnson, L.F. and Moran, M.B. (1994) Protective optical coatings for diamond infrared windows,in Window and Dome Technologies and Materials IV, SPIE Proc. 2286, 347–353.

    ADS  Google Scholar 

  57. Kononenko, T.V., Kononenko, V.V., Konov, V.I., Pimenov, S.M., Garnov, S.V., Tishchenko, A.V., Prokhorov, A.M. and Khomich, A.V. (1999) Formation of antireflective surface structures of diamond films by laser patterning, Appl. Phys. A68, 99–102.

    ADS  Google Scholar 

  58. Givargizov, E.I., Zhirnov, V.V., Stepanova, A.N., Rakova, E.V., Kiselev, A.N. and Plekhnov, P.S. (1995) Microstructure and field emission of diamond particles on silicon tips, Appl. Surf. Sci. 87/88, 24–30.

    Article  Google Scholar 

  59. Zhu, W., Kochanski, G.P., Jin, S. and Seibles, L. (1995) Defect-enhanced electron emission from chemical vapor deposited diamond, J. Appl. Phys. 78, 2707–2711.

    Article  ADS  Google Scholar 

  60. Karabutov, A.V., Ralchenko, V.G., Vlasov, I.I., Khmelnitsky, R.A., Negodaev, M.A., Vamin, V.P. and Teremetskaya I.G. (2000) Surface engineering of diamond tips for improved field electron emission, paper presented at Int. Conf. DIAMOND’2000, 3-8 September 2000, Porto, Portugal, paper # 15.5.15.

    Google Scholar 

  61. Ralchenko, V., Migulin, V., Kononenko, T., Kononenko, V., Konov, V. and Negodaev, M. (1999) Treatment of diamond films with lasers, in P. Vincenzini (ed) Diamond Films. Advances in Science and Technology, Vol. 21, Proc. 9 th CIMTEC’98-Forum on New Materials, Techna, Faenza, pp.109–118.

    Google Scholar 

  62. Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S., Marti, J. and Ralchenko, V.G. (1998) Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897–901.

    Article  ADS  Google Scholar 

  63. Ralchenko, V. and Givargizov, E., to be published.

    Google Scholar 

  64. Givargizov, E.I. (1993) Ultrasharp tips for field emission applications prepared by the vapor-liquid-solid growth technique, J. Vac. Sci. Technol. B11, 449–453.

    Google Scholar 

  65. Dennig, P.A., Liu, H.I., Stevenson, D.A. and Pease, R.F.W. (1995) Growth of single diamond crystallites around nanometer-scale silicon wires, Appl. Phys. Lett. 67,909–911.

    Article  ADS  Google Scholar 

  66. Eden, R.C. (1997) Application of diamond in computers, in Handbook of Industrial Diamonds and Diamond Films, ed. by M. Prelas, G. Popovici and L. Bigelow, Marcel Dekker, New York, pp. 1073–1102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ralchenko, V. (2001). Nano- and Microstructural Features in CVD Diamond Growth. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics