Skip to main content

A Theoretical Approach to Functionalization of Carbon Nanotubes

  • Conference paper
Book cover Nanostructured Carbon for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 24))

Abstract

We present recent density-functional based investigations on functionalization of carbon nanotubes (CNT’s). Potential problems and applications that will be addressed include: (i) Chemical force imaging by interaction of open-end functionalized CNT’s with self-assembled monolayers; (ii) Tailoring of intrinsic electronic properties for nanoscale electronics by side-wall functionalization of CNT’s with fluorine; and (iii) Electrochemically based mechanisms for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F. and Smalley R.E. (1985) Nature (London) 318, 162.

    Article  ADS  Google Scholar 

  2. Iijima S. (1991) Nature (London) 354, 56.

    Article  ADS  Google Scholar 

  3. Wong S.S., Joselevich E., Wooley A.T., Cheung C.L. and Lieber CM. (1998) Nature (London) 394, 52; Liu J., Rinzler A.G., Dai H., Hafner J., Bradley R.K., Boul P., Lu A., Iverson T., Shelimov K., Huffman C.B., Rodriguez-Macias F., Shon Y.S., Lee T.R., Colbert D.T. and Smalley R.E. (1998) Science 280, 1253.

    Article  ADS  Google Scholar 

  4. Wong S.S., Joselevich E., Woolley A.T., Cheung C.L., and Lieber C.M. (1998) Nature 394, 52.

    Article  ADS  Google Scholar 

  5. Dai H., Hafner J.H., Rinzler A.G., Colbert D.T., and Smalley R.E. (1996) Nature 384, 147.

    Article  ADS  Google Scholar 

  6. Keller D. (1996) Nature 384, 111.

    Article  ADS  Google Scholar 

  7. Park I., Elstner M., Frauenheim T., Kaxiras E. (2000) Chem. Phys. Lett. submitted.

    Google Scholar 

  8. Mickelson E.T., Huffman C.B., Rinzler A.G., Smalley R.E., Hauge R.H. and Margrave J.L. (1998) Chem. Phys. Lett. 296, 188.

    Article  ADS  Google Scholar 

  9. Mickelson E.T., Chiang I.W., Zimmerman J.L., Boul P.J., Lozano J., Liu J., Smalley R.E., Hauge R.H. and Margrave J.L. (1999) J. Phys. Chem. B103, 4318.

    Google Scholar 

  10. Kelly K.F., Chiang I.W., Mickelson E.T., Hauge R.H., Margrave J.L., Wang X., Scuseria G.E., Radloff C. and Halas N.J. (1999) Chem. Phys. Lett 313, 445.

    Article  ADS  Google Scholar 

  11. A. C. Dillon et al., Nature 386, 377 (1997).

    Article  ADS  Google Scholar 

  12. Y. Ye et al., Appl. Phys. Lett. 74, 2307 (1999).

    Article  ADS  Google Scholar 

  13. C. Liu et al., Science 286, 1127 (1999).

    Article  Google Scholar 

  14. A. Chambers et al., J. Phys. Chem. 102, 4253 (1998).

    Article  Google Scholar 

  15. C. Nutzenadel et al., Electrochem. and Solid-State Lett. 2, 30 (1999).

    Article  Google Scholar 

  16. S. M. Lee et al., accepted to Syn. Metals.

    Google Scholar 

  17. M. Elstner et al., Phys. Rev. B 58, 7260 (1998).

    Article  ADS  Google Scholar 

  18. DMol3 is a registered software product of Molecular Simulations Inc.; B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  ADS  Google Scholar 

  19. The convergency criterion for the structure optimization is that all forces be ≤ 0.001 a.u.. and the energy change for the charge density per self-iteration be ≤ 1.0x10-5 atomic units. Structure optimization is done by the SCC-DFTB and LDA schemes. The GGA calculations are done with structures optimized by LDA whenever necessary.

    Google Scholar 

  20. Shirakawa H. and Ikeda S. (1971) Polym. J. 2, 231.

    Article  Google Scholar 

  21. Naarmann H. and N. Theophiliou N. (1987) Synth. Met. 22, 1.

    Article  Google Scholar 

  22. Piao G., Kaneko S., Higuchi I., Akagi K., Shirakawa H. and Kyotani M. (1999) Synth. Met. 101, 94.

    Article  Google Scholar 

  23. The binding energy of C-H bond is calculated by, Eb(C-H) = Etotal(CNT+H) — Etotal(CNT) — NH Eatom (H).

    Google Scholar 

  24. The binding energy is overestimated by 0.9 eV in the SCC-DFTB, compared to the GGA calculations. However the energy differences for different configurations were small.

    Google Scholar 

  25. S. M. Lee and Y. H. Lee, accepted to Appl. Phys. Lett.

    Google Scholar 

  26. M. R. Pederson and J. Q. Broughton, Phys. Rev. Lett. 69, 2689 (1992).

    Article  ADS  Google Scholar 

  27. P. M. Ajayan and S. Iijima, Nature 361, 333 (1993).

    Article  ADS  Google Scholar 

  28. We move an hydrogen atom towards the tube wall in each step and then fix the radial component of the hydrogen atom, while relaxing all other carbon atoms in the tube. This relaxation scheme is applied to the rest of the calculations, unless specified.

    Google Scholar 

  29. We have also tried several flip-in processes, where the hydrogen atom rotates through the hexagonal ring. However, rotation of hydrogen atom to near the graphitic plane induces severe distortions of sp 3 bonds, resulting in the formation of a new CH2 at the adjacent carbon site and the bond-breaking of the C-C bond. This gives rise to a large activation barrier ≥ 3 eV and furthermore disintegrates the tube wall.

    Google Scholar 

  30. S. M. Lee et al., unpublished.

    Google Scholar 

  31. The maximum hydrogen coverage can be reached when the CNT-call forms an arch type with molecular hydrogens inside the capillary.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Frauenheim, T., Seifert, G., Koehler, T., Elstner, M., Lee, S.M., Lee, Y.H. (2001). A Theoretical Approach to Functionalization of Carbon Nanotubes. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics