Skip to main content

Electronic Structure and Quantum Conductance of Carbon Nanotubes

  • Conference paper
Book cover Nanostructured Carbon for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 24))

  • 210 Accesses

Abstract

The unique electronic properties of carbon nanotubes stem from the fact that the electronic structure of these systems is derived from a folded graphene band structure which is highly sensitive to the tube diameter and chirality. In this chapter, we review some theoretical work on the electronic and transport properties of the single-walled carbon nanotubes, including systems with junction structures, defects, and disorder. On-tube metal-metal, semiconductor-semiconductor, and metalsemiconductor junctions have been studied. In addition, substitutional impurities and pentagon-heptagon defect pairs are shown to have interesting effects on the conductance. The structure and properties of crossed nanotube junctions and disordered nanotubes with static external perturbations have also been studied. The nanoscale size and the unique electronic properties of the carbon nanotubes make the potential usage of these novel systems for new device applications very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ijima, S. (1991) Nature 354, 56–58.

    Article  ADS  Google Scholar 

  2. Dresselhaus, M.S., Dresselhause, G, and Eklund, P.C. (1996) Science of Fullerenes and Carbon Nanotubes Academic Press, New York.

    Google Scholar 

  3. Ajayan, P.M. and Ebbesen, T.W. (1997) Rep. Prog. Phys. 60, 1025–1062.

    Article  ADS  Google Scholar 

  4. Dekker, C. (1999) Phys. Today 52, 22–28.

    Article  ADS  Google Scholar 

  5. Iijima, S. and Ichihashi, T (1993) Nature 363, 603–605.

    Article  ADS  Google Scholar 

  6. Bethune, D.S., Kiang, C.H., de Vries, M.S, Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993) Nature 363, 605–607.

    Article  ADS  Google Scholar 

  7. Ajayan, P.M., Lambert, J.M., Bernier, P., Barbedette, L., Colliex, C., and Planeix, J.M. (1993) Chem. Phys. Lett. 215, 509–517.

    Article  ADS  Google Scholar 

  8. Guo, T., Jin., C.-M, and Smalley, R.E. (1995) Chem. Phys. Lett. 243, 49–54.

    Article  Google Scholar 

  9. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.-G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., and Smalley, R.E. (1996) Science 273, 483–487.

    Article  ADS  Google Scholar 

  10. Dai, H., Wong, E.W., and Lieber, CM. (1996) Nature 384, 147–150.

    Article  ADS  Google Scholar 

  11. de Heer, W.A., Chôtelain, A., and Ugarte, D. (1995) Science 270, 1179–1180.

    Article  ADS  Google Scholar 

  12. Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.-G., Tománek, D., Nordlander, P., Colbert, D.T., and Smalley, R.E. (1995) Science 269, 1550–1553.

    Article  ADS  Google Scholar 

  13. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J. (1997) Nature 386, 377–379.

    Article  ADS  Google Scholar 

  14. Chico, L., Crespi, V.H., Benedict, L.X., Louie, S.G., and Cohen, M.L. (1996) Phys. Rev. Lett. 76, 971–974.

    Article  ADS  Google Scholar 

  15. Lambin, Ph., Fonseca, A., Vigneron, J.P., Nagy, J.B., and Lucas, A.A. (1995) Chem Phys. Lett. 245, 85–89.

    Article  ADS  Google Scholar 

  16. Saito, R., Dresselhaus, G., and Dresselhaus, M.S. (1996) Phys. Rev. B 53, 2044–2050.

    Article  ADS  Google Scholar 

  17. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., and Dekker, C. (1997) Nature 386, 474–477.

    Article  ADS  Google Scholar 

  18. Bockrath, M., Cobden, D.H., McEuen, P.L., Chopra, N.G., Zettl, A., Thess, A., and Smalley, R.E. (1997) Science 275, 1922–1924.

    Article  Google Scholar 

  19. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, Ph. (1998) Appl. Phys. Lett. 73, 2447–2449.

    Article  ADS  Google Scholar 

  20. Collins, P.G., Zettl, A., Bando, H., Thess, A., and Smalley, R.E. (1997) Science 278 100–103.

    Article  Google Scholar 

  21. Yao, Z., Postma, H.W.C., Balents, L., and Dekker, C. (1999) Nature 402, 273–276.

    Article  ADS  Google Scholar 

  22. Tans, S.J., Verschueren, R.M., and Dekker, C. (1998) Nature 393, 49–52.

    Article  ADS  Google Scholar 

  23. Ebbesen., T.W. (1994) Annu. Rev. Mater. Sci. 24, 235–264.

    Article  ADS  Google Scholar 

  24. Ebbesen, T.W., Hiura, H., Pujita, J., Ochiai, Y., Matsui, S., and Tanigaki, K. (1993) Chem. Phys. Lett. 209, 83–90.

    Article  ADS  Google Scholar 

  25. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Chapelle, M.L., Deniard, P., Lefrant, S., Lee, R., and Fischer, J.E. (1997) in Molecular Nanostructures, Kuzmany, H., Fink, J., Mehring, M., and Roth, S. (eds.), 386–390.

    Google Scholar 

  26. Kong, J., Cassell, A.M., Dai, H. (1998) Chem. Phys. Lett. 292, 567–574.

    Article  ADS  Google Scholar 

  27. White, C.T., Robertson, D.H., and Mintmire, J.W. (1993) Phys. Rev. B 47, 5485–5488.

    Article  ADS  Google Scholar 

  28. Mintmire, J.W., White, C.T. (1995) Solid State Commun. 33, 893–902.

    Google Scholar 

  29. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S. (1992) Appl. Phys. Lett. 60, 2204–2206.

    Article  ADS  Google Scholar 

  30. Mintmire, J.W., Dunlap, B.I., and White, C.T. (1992) Phys. Rev. Lett. 68, 631–634.

    Article  ADS  Google Scholar 

  31. Hamada, N., Sawada, S.-L, Oshiyama, A. (1992) Phys. Rev. Lett. 60, 2204–2208.

    Google Scholar 

  32. Blase, X, Benedict, L.X., Shirley, E.L., and Louie, S.G. (1994) Phys. Rev. Lett. 72, 1878–1881.

    Article  ADS  Google Scholar 

  33. Blase, X. and Louie, S.G. unpublished.

    Google Scholar 

  34. Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A. (1995) Nature 377, 135–138.

    Article  ADS  Google Scholar 

  35. Sawada, S.-I. and Hamada, N. (1992) Solid State Commun. 83, 917–919.

    Article  ADS  Google Scholar 

  36. Langer, L., Bayot, V., Grivei, E., Issi, J.P., Heremans, J.P., Olk, C.H., Stockman, L., Van Haesendonck, C., and Bruynseraede, Y. (1996) Phys. Rev. Lett. 76, 479–482.

    Article  ADS  Google Scholar 

  37. Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F., and Thio, T. (1996) Nature 382, 54–56.

    Article  ADS  Google Scholar 

  38. Dai, H., Wong, E.W., and Lieber, CM. (1994) Science 272, 523–526.

    Article  ADS  Google Scholar 

  39. Wildöer, J.W.G., Venema, L.C, Rinzler, A.G., Smalley, R.E., and Dekker, C (1998) Nature 391, 59–62.

    Article  ADS  Google Scholar 

  40. Odom, T.W., Huang, J.L., Kim, P., and Lieber, CM. (1998) Nature 391, 62–64.

    Article  ADS  Google Scholar 

  41. Delaney, P., Choi, H.J., Ihm, J., Louie, S.G., and Cohen, M.L. (1998) Nature 391, 466–468.

    Article  ADS  Google Scholar 

  42. Delaney, P., Choi, H.J., Ihm, J., Louie, S.G., and Cohen, M.L. (1999) Phys. Rev. B 60, 7899–7904.

    Article  ADS  Google Scholar 

  43. Kwon, Y.K., Saito, S., and Tománek, D. (1998) Phys. Rev. B 58, R13314–R13317.

    Article  ADS  Google Scholar 

  44. Henrard, L., Loiseau, A., Journet, C., Bernier, P. (2000) Euro. Phys. J. B 13, 661–669.

    Article  ADS  Google Scholar 

  45. Chico, L., Benedict, L.X., Louie, S.G., and Cohen, M.L. (1996) Phys. Rev. B 54, 2600–2606.

    Article  ADS  Google Scholar 

  46. Dunlap, B.I. (1994) Phys. Rev. B 49, 5643–5651.

    Article  ADS  Google Scholar 

  47. Charlier, J.-C, Ebbesen, T.W., and Lambin, Ph. (1996) Phys. Rev. B 53, 11108–11113.

    Article  ADS  Google Scholar 

  48. Ebbesen T.W., and Takada, T. (1995) Carbon 33, 973–978.

    Article  Google Scholar 

  49. Lambin, Ph., Philippe, L., Charlier, J.-C, and Michenaud, J.P. (1996) Synthetic Metals 2, 350–356.

    Google Scholar 

  50. Louie, S.G. and Cohen, M.L. (1976) Phys. Rev. B 13, 2461–2469.

    Article  ADS  Google Scholar 

  51. Landauer, R. (1970) Phil. Mag. 21, 863–867.

    Article  ADS  Google Scholar 

  52. Fisher, D.S. and Lee, P.A. (1981) Phys. Rev. B 23, 6851–6854.

    Article  MathSciNet  ADS  Google Scholar 

  53. Choi, H.J. and Ihm, J. (1999) Phy. Rev. B 59, 2267–2275.

    Article  ADS  Google Scholar 

  54. Choi, H.J., Ihm, J., Louie, S.G., and Cohen, M.L. (2000) Phy. Rev. Lett. 84, 2917–2920.

    Article  ADS  Google Scholar 

  55. Fuhrer, M.S., Nygard, J., Shih, L., Foreo. M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A., and McEuen, P.L (2000) Science 288, 494–497.

    Article  ADS  Google Scholar 

  56. Menon, M. and Srivastava, D (1997) Phys. Rev. Lett. 79, 4453–4456.

    Article  ADS  Google Scholar 

  57. Treboux, G., Lapstun, P., Silverbrook, K. (1999) Chem. Phys. Lett. 306, 402–406.

    Article  ADS  Google Scholar 

  58. Sanchez-Portal, D., Ordejón, P., Artacho, E., and Soler, J.M. (1997) Int. J. of Quantum Chem. 65, 453–461.

    Article  Google Scholar 

  59. Yoon, Y.-G., Mazzoni, M.S.C., Louie, S.G., Choi, H.J., and Ihm, J. to be published.

    Google Scholar 

  60. Hertel, I.V., Walkup, R.E., and Avouris, Ph. (1998) Phys. Rev. B 58, 13870–13873.

    Article  ADS  Google Scholar 

  61. Büttiker, M. (1986) Phys. Rev. Lett. 57, 1761–1764.

    Article  ADS  Google Scholar 

  62. McEuen, P.L., Bockrath, M., Cobden, D.H., Yoon, Y.-G., and Louie, S.G. (1999) Phys. Rev. Lett. 83, 5098–5091.

    Article  ADS  Google Scholar 

  63. Ando, T., Nakanishi, T. (1998) J. Phys. Soc. Jpn. 67, 1704–1713.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Yoon, YG., Louie, S.G. (2001). Electronic Structure and Quantum Conductance of Carbon Nanotubes. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics