Topology, Properties and Thermodynamics of Amorphous Carbon

  • A. S. Bakai
  • M. P. Fateev
  • Yu. A. Turkin
Conference paper
Part of the NATO Science Series book series (NAII, volume 24)


Amorphous carbon (a-C) in solid state is a rather big family of carbon materials with many types of short-range and medium-range orders (SRO and MRO). From thermodynamic point of view any a-C is a non-ergodic and non-equilibrium system. The diffusional structure relaxation time in graphite and diamond at T < 103 K is huge because the activation energy of this process is estimated to be larger than 7 eV. In a-C the structure relaxation processes are also very slow at those temperatures. Therefore many forms of a-C are rather stable to be used and investigated.


Specific Volume Amorphous Carbon Structure Relaxation Atom Beam Pair Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakai, A.S. and. Strelnitskij V.E. (1984) Structure and properties of carbon condensates obtained by fast particle flux deposition, (in Russian), Atominform, Moscow.Google Scholar
  2. 2.
    Robertson, J.,and O’Reily, E.P. (1987) Electronic and atomic structure of amorphous carbon, Phys.Rev.B. 35, 2946–2957.ADSCrossRefGoogle Scholar
  3. 3.
    Aisenberg, S., and Kimock, F.M.. (1990) Ion-beam and ion assisted deposition of diamond-like carbon films, Mater. Sci. Forum. 52, 1–12.CrossRefGoogle Scholar
  4. 4.
    Robertson, J. (1991) Hard amorphous (diamond-like) carbon, Progr. Solid State Chem. 2, 199–247.CrossRefGoogle Scholar
  5. 5.
    Kelires, P. C. Structural properties and energetics of amorphous forms of carbon, Phys. Rev. B. 47, 1829–1839.Google Scholar
  6. 6.
    Palmer, R. (1982) Broken ergodicity Adv. Phys. 31, 669–698.CrossRefGoogle Scholar
  7. 7.
    Palatnik, L.S., Nechitailo A.A., and Koz’ma A.A. (1981) Poliamorphizm and substructure of short range order in the boron amorphous films, Docl. Akad. Nauk SSSR 36, 1134–1137.ADSGoogle Scholar
  8. 8.
    Angell, C.A. (1995) Formation of glasses from liquids and biopolimers, Science 267, 1924–1935.ADSCrossRefGoogle Scholar
  9. 9.
    Anderson, P.W. (1979) Lectures on amorphous systems, in R. Balian (ed.), III-Condensed Matter, North-Holland, Amsterdam, pp. 161–261.Google Scholar
  10. 10.
    Kaukonen, H. P., Nieminen, R. M. (1992) Molecular-dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams, Phys. Rev. Lett. 68, 620–623.ADSCrossRefGoogle Scholar
  11. 11.
    Lee, C., Lambrecht, W., Segal, B., Kelires, P., Frauenheim, T., and Stephan, U. (1994) Electronic structure of dense amorphous carbon models, Phys. Rev. B. 49, 1148–1152.Google Scholar
  12. 12.
    Frauenheim, T., Blaudeck, P., Stephan, U., and Jungnickel, G. (1993) Atomic structure and physical properties of amorphous carbon and its hydrogeneted analogs, Phys. Rev. B. 48, 4823–4834.ADSCrossRefGoogle Scholar
  13. 13.
    Marks, N.A., Mckenzie, D.R., Pailthorpe, B.A., Bernasconi, M., and Parrinello, M. (1996) Ab initio simulation of tetrahedral amorphous carbon, Phys. Rev. B. 54, 9703–9714.ADSCrossRefGoogle Scholar
  14. 14.
    Bakai, A.S. (1996) Phase transition and vitrification, Low Temp. Phys. 22, 733–739.ADSGoogle Scholar
  15. 15.
    Bakai, A.S. (1998) On Thermodynamics of supercooled liquids and glasses, Low Temp. Phys. 24, 20–34.ADSCrossRefGoogle Scholar
  16. 16.
    Fischer, E.W. and Bakai, A.S. (1999) Heterophase fluctuations in supercooled liquids and polymers, in M. Tokuyama and I. Oppenheim (eds.), Slow dynamics in complex systems, AIP Conf. Proc. 469, 325–332.Google Scholar
  17. 17.
    Bakai, A.S. (2000) Heterophase fluctuations in glass-forming liquids and random field Ising model, Condenced Matter Phys. 3, 675–682.Google Scholar
  18. 18.
    Robertson, J. (1993) Deposition mechanisms for promoting sp 3 bonding in diamond-like carbon, Diamond Relat. Mater. 2, 984–989.ADSCrossRefGoogle Scholar
  19. 19.
    Davis, C.A. (1993) A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films 226, 30–34.ADSCrossRefGoogle Scholar
  20. 20.
    Fallon, P.J., Veerasamy, V.S., Davis, CA., et. al. (1993) Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B. 48, 4777–4782.ADSCrossRefGoogle Scholar
  21. 21.
    Lifshitz, Y., Kasi, S.R., and Rabalais J.W. (1990) Carbon (sp3) film growth from mass selected ion beams: Parametric investigations and subplantation model, Mater. Sci. Forum. 52-53, 237–246.CrossRefGoogle Scholar
  22. 22.
    Uhlmann, S., Frauenheim, T., and Stephan U. (1995) Molecular-dynamic subplantation studies of carbon beneath the diamond (111) surface, Phys. Rev. B. 51, 4541–4548.ADSCrossRefGoogle Scholar
  23. 23.
    Uhlmann, S., Frauenheim, T., and Lifshitz, S. (1998) Molecular-dynamic study of the fundamental processes involved in subplantation of diamond-like carbon, Phys. Rev. Lett. 81, 641–646.ADSCrossRefGoogle Scholar
  24. 24.
    Stauffer, D. (1985) Introduction of percolation theory, Tailor&Francis Ltd.Google Scholar
  25. 25.
    Kantor, Y. and Webman, I. Elastic properties of random percolation systems, Phys. Rev. Lett. 52, 1891–1894.Google Scholar
  26. 26.
    Bergman, D. Elastic module near percolation: universal ratio and critical exponent, Phys. Rev. B. 31, 1696–1698.Google Scholar
  27. 27.
    Bakai, A.S., Gonchar, V. Yu., Krikun, S.V., and Lubarsky G.Ya. (1995) Influence of atomic arrangement correlation on percolation propertties of three-dimensional condensates, Functional materials 2, 222–228.Google Scholar
  28. 28.
    Glosli, N.J., and Ree, F.H. (1999) The melting line of diamond determined via atomistic computer simulations, J. Chem. Phys. 110, 441–446.ADSCrossRefGoogle Scholar
  29. 29.
    Glosli, N.J., and Ree, F.H. (1999) Liquid-liquid phase transformation in carbon, Phys. Rev. Lett. 82, 4659–4662.ADSCrossRefGoogle Scholar
  30. 30.
    Tersoff, J. (1988) Empirical interatomic potential for carbon, with application to amorphous carbon, Phys. Rev. Lett. 61, 2879–2882.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. S. Bakai
    • 1
  • M. P. Fateev
    • 1
  • Yu. A. Turkin
    • 1
  1. 1.National Science Center “Kharkiv Institute of Physics and Technology”KharkivUkraine

Personalised recommendations