Skip to main content

Topology, Properties and Thermodynamics of Amorphous Carbon

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 24))

Abstract

Amorphous carbon (a-C) in solid state is a rather big family of carbon materials with many types of short-range and medium-range orders (SRO and MRO). From thermodynamic point of view any a-C is a non-ergodic and non-equilibrium system. The diffusional structure relaxation time in graphite and diamond at T < 103 K is huge because the activation energy of this process is estimated to be larger than 7 eV. In a-C the structure relaxation processes are also very slow at those temperatures. Therefore many forms of a-C are rather stable to be used and investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakai, A.S. and. Strelnitskij V.E. (1984) Structure and properties of carbon condensates obtained by fast particle flux deposition, (in Russian), Atominform, Moscow.

    Google Scholar 

  2. Robertson, J.,and O’Reily, E.P. (1987) Electronic and atomic structure of amorphous carbon, Phys.Rev.B. 35, 2946–2957.

    Article  ADS  Google Scholar 

  3. Aisenberg, S., and Kimock, F.M.. (1990) Ion-beam and ion assisted deposition of diamond-like carbon films, Mater. Sci. Forum. 52, 1–12.

    Article  Google Scholar 

  4. Robertson, J. (1991) Hard amorphous (diamond-like) carbon, Progr. Solid State Chem. 2, 199–247.

    Article  Google Scholar 

  5. Kelires, P. C. Structural properties and energetics of amorphous forms of carbon, Phys. Rev. B. 47, 1829–1839.

    Google Scholar 

  6. Palmer, R. (1982) Broken ergodicity Adv. Phys. 31, 669–698.

    Article  Google Scholar 

  7. Palatnik, L.S., Nechitailo A.A., and Koz’ma A.A. (1981) Poliamorphizm and substructure of short range order in the boron amorphous films, Docl. Akad. Nauk SSSR 36, 1134–1137.

    ADS  Google Scholar 

  8. Angell, C.A. (1995) Formation of glasses from liquids and biopolimers, Science 267, 1924–1935.

    Article  ADS  Google Scholar 

  9. Anderson, P.W. (1979) Lectures on amorphous systems, in R. Balian (ed.), III-Condensed Matter, North-Holland, Amsterdam, pp. 161–261.

    Google Scholar 

  10. Kaukonen, H. P., Nieminen, R. M. (1992) Molecular-dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams, Phys. Rev. Lett. 68, 620–623.

    Article  ADS  Google Scholar 

  11. Lee, C., Lambrecht, W., Segal, B., Kelires, P., Frauenheim, T., and Stephan, U. (1994) Electronic structure of dense amorphous carbon models, Phys. Rev. B. 49, 1148–1152.

    Google Scholar 

  12. Frauenheim, T., Blaudeck, P., Stephan, U., and Jungnickel, G. (1993) Atomic structure and physical properties of amorphous carbon and its hydrogeneted analogs, Phys. Rev. B. 48, 4823–4834.

    Article  ADS  Google Scholar 

  13. Marks, N.A., Mckenzie, D.R., Pailthorpe, B.A., Bernasconi, M., and Parrinello, M. (1996) Ab initio simulation of tetrahedral amorphous carbon, Phys. Rev. B. 54, 9703–9714.

    Article  ADS  Google Scholar 

  14. Bakai, A.S. (1996) Phase transition and vitrification, Low Temp. Phys. 22, 733–739.

    ADS  Google Scholar 

  15. Bakai, A.S. (1998) On Thermodynamics of supercooled liquids and glasses, Low Temp. Phys. 24, 20–34.

    Article  ADS  Google Scholar 

  16. Fischer, E.W. and Bakai, A.S. (1999) Heterophase fluctuations in supercooled liquids and polymers, in M. Tokuyama and I. Oppenheim (eds.), Slow dynamics in complex systems, AIP Conf. Proc. 469, 325–332.

    Google Scholar 

  17. Bakai, A.S. (2000) Heterophase fluctuations in glass-forming liquids and random field Ising model, Condenced Matter Phys. 3, 675–682.

    Google Scholar 

  18. Robertson, J. (1993) Deposition mechanisms for promoting sp 3 bonding in diamond-like carbon, Diamond Relat. Mater. 2, 984–989.

    Article  ADS  Google Scholar 

  19. Davis, C.A. (1993) A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films 226, 30–34.

    Article  ADS  Google Scholar 

  20. Fallon, P.J., Veerasamy, V.S., Davis, CA., et. al. (1993) Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B. 48, 4777–4782.

    Article  ADS  Google Scholar 

  21. Lifshitz, Y., Kasi, S.R., and Rabalais J.W. (1990) Carbon (sp3) film growth from mass selected ion beams: Parametric investigations and subplantation model, Mater. Sci. Forum. 52-53, 237–246.

    Article  Google Scholar 

  22. Uhlmann, S., Frauenheim, T., and Stephan U. (1995) Molecular-dynamic subplantation studies of carbon beneath the diamond (111) surface, Phys. Rev. B. 51, 4541–4548.

    Article  ADS  Google Scholar 

  23. Uhlmann, S., Frauenheim, T., and Lifshitz, S. (1998) Molecular-dynamic study of the fundamental processes involved in subplantation of diamond-like carbon, Phys. Rev. Lett. 81, 641–646.

    Article  ADS  Google Scholar 

  24. Stauffer, D. (1985) Introduction of percolation theory, Tailor&Francis Ltd.

    Google Scholar 

  25. Kantor, Y. and Webman, I. Elastic properties of random percolation systems, Phys. Rev. Lett. 52, 1891–1894.

    Google Scholar 

  26. Bergman, D. Elastic module near percolation: universal ratio and critical exponent, Phys. Rev. B. 31, 1696–1698.

    Google Scholar 

  27. Bakai, A.S., Gonchar, V. Yu., Krikun, S.V., and Lubarsky G.Ya. (1995) Influence of atomic arrangement correlation on percolation propertties of three-dimensional condensates, Functional materials 2, 222–228.

    Google Scholar 

  28. Glosli, N.J., and Ree, F.H. (1999) The melting line of diamond determined via atomistic computer simulations, J. Chem. Phys. 110, 441–446.

    Article  ADS  Google Scholar 

  29. Glosli, N.J., and Ree, F.H. (1999) Liquid-liquid phase transformation in carbon, Phys. Rev. Lett. 82, 4659–4662.

    Article  ADS  Google Scholar 

  30. Tersoff, J. (1988) Empirical interatomic potential for carbon, with application to amorphous carbon, Phys. Rev. Lett. 61, 2879–2882.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bakai, A.S., Fateev, M.P., Turkin, Y.A. (2001). Topology, Properties and Thermodynamics of Amorphous Carbon. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics