Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 564))

  • 427 Accesses

Abstract

I discuss the arguments in favour of the traditional hypothesis that the string, compactification and Planck scales are all within two or three orders of magnitude from each other. I then briefly review recent ideas that challenge this traditional point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Bachas, Class. Quant. Grav. 17, 951 (2000) [hep-th/0001093].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. C. Bachas, in Fundamental Interactions: From Symmetries to Black Holes, J.-M. Frère et al eds., Brussels 1999, [hep-th/9907023].

    Google Scholar 

  3. C. P. Bachas, hep-ph/0003259.

    Google Scholar 

  4. I. Antoniadis, hep-th/9909212.

    Google Scholar 

  5. I. Antoniadis and A. Sagnotti, Class. Quant. Grav. 17, 939 (2000) [hep-th/9911205].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L. E. Ibanez, Class. Quant. Grav. 17, 1117 (2000) [hep-ph/9911499].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. E. Dudas, Class. Quant. Grav. 17, R41 (2000) [hep-ph/0006190].

    Google Scholar 

  8. E. Witten, Nucl. Phys. B471 (1996) 135 [hep-th/9602070].

    Google Scholar 

  9. J.D. Lykken, Phys. Rev. D54 (1996) 3693 [hep-th/9603133.

    MathSciNet  ADS  Google Scholar 

  10. E. Carceres, V.S. Kaplunovsky and I.M. Mandelberg, Nucl. Phys. B493 (1997) 73 [hep-th/9606036].

    Article  ADS  Google Scholar 

  11. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263, hep-ph/9803315; and Phys. Rev. D59 (1999)086004 [hep-ph/9807344].

    Google Scholar 

  12. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 (1998) 257 [hep-ph/9804398].

    Google Scholar 

  13. G. Shiu and S.-H. H. Tye, Phys. Rev. D58 (1998) 106007 [hepth/ 9805157].

    MathSciNet  Google Scholar 

  14. Z. Kakushadze and S.-H. Henry Tye, Nucl. Phys. B548 (1999) 180 [hep-thj9809147]_.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. C. Bachas, JHEP 9811 (1998) 023 [hep-phj9807415].

    Article  MathSciNet  ADS  Google Scholar 

  16. I. Antoniadis and C. Bachas, Phys. Lett. B450 (1999) 83 [hepthj9812093].

    MathSciNet  MATH  Google Scholar 

  17. K. Benakli, Phys.Rev. D60 (1999) 104002 [hep-phj9809582].

    MathSciNet  Google Scholar 

  18. C. Burgess, L.E. Ibanez and F. Quevedo, Phys.Lett. B447 (1999) 257 [hep-phj9810535].

    MathSciNet  MATH  Google Scholar 

  19. I. Antoniadis and B. Pioline, Nucl. Phys. B 550, 41 (1999) [hepthj9902055].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. K. Benakli and Y. Oz, Phys. Lett. B 472, 83 (2000) [hepthj9910090].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. L. E. Ibanez, hep-phj9905349.

    Google Scholar 

  22. L. Randall and R. Sundrum, Phys.Rev.Lett. 83 (1999) 3370 [hepphj9905221] and Phys.Rev.Lett. 83 (1999) 4690 [hep-thj9906064].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83, 4922 (1999) [hep-phj9907447].

    Article  ADS  Google Scholar 

  24. N. Arkani-Hamed, S. Dimopoulos and J. March-Russell, hepthj9908146.

    Google Scholar 

  25. N. Arkani-Hamed, L. Hall, D. Smith and N. Weiner, Phys. Rev. D 63, 056003 (2001) [hep-phj9911421].

    Article  ADS  Google Scholar 

  26. J.C. Long, H.W. Chan and J.C. Price, Nucl.Phys. B539 (1999) 23 [hep-phj9805217].

    Article  ADS  Google Scholar 

  27. S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. C. P. Burgess, R. C. Myers and F. Quevedo, Phys. Lett. B 495, 384 (2000) [hep-thj9911164]; E. Verlinde and H. Verlinde, JHEP0005, 034 (2000) [hepthj9912018]; N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, Phys. Lett. B 480, 193 (2000) [hep-thj0001197]; S. Kachru, M. Schulz and E. Silverstein, Phys. Rev. D 62, 045021 (2000) [hep-thj0001206]; R. Bousso and J. Polchinski, JHEP0006, 006 (2000) [hepthj0004134]; L. Feng, J. March-Russell, S. Sethi and F. Wilczek, hep-thj0005276; J. Chen, M. A. Luty and E. Ponton, JHEP0009, 012 (2000) [hepthj0003067].

    Article  ADS  Google Scholar 

  29. R. Sundrum, JHEP 9907 (1999) 001 [hep-phj9708329]_; T. Tomaras, private communication.

    Article  MathSciNet  ADS  Google Scholar 

  30. See for instance S. Dimopoulos, in History of Original Ideas and Basic Discoveries in Particle Physics ( Erice 1994), hep-ph/9412297.

    Google Scholar 

  31. H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.

    Article  ADS  Google Scholar 

  32. S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24 (1981) 1681; S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150; L. Ibanez and G.G. Ross, Phys. Lett. B106 (1981) 439; N. Sakai, Z. Phys. C11 (1981) 153.

    ADS  Google Scholar 

  33. More recent discussions are given in P. Langacker and N. Polonsky, Phys.Rev. D47 (1993) 4028 [hep-ph/9210235; and Phys. Rev. D49 (1994) 1454 [hep-ph/9306205]; M. Carena, S. Pokorski and C.E.M. Wagner, Nucl. Phys. B406 (1993) 59 [hep-ph/9303202]_; for fermion masses see also M. Carena, S. Dimopoulos, S. Raby and C.E.M. Wagner, Phys. Rev. D52 (1995) 4133, and references therein.

    ADS  Google Scholar 

  34. P. Ginsparg, Phys. Lett. B197 (1987) 139.

    MathSciNet  Google Scholar 

  35. V. Kaplunovsky, Nucl. Phys. B307 (1988) 145; L. Dixon, V. Kaplunovsky and J. Louis, Nucl. Phys. B329 (1990) 27.

    Article  MathSciNet  ADS  Google Scholar 

  36. For a review see K. Dienes, Phys. Rep. 287 (1997) 447, and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Costa and F. Zwirner, Riv.Nuovo Cim. 9 (1986) 1.

    Article  Google Scholar 

  38. G. Altarelli and F. Feruglio, Phys. Rept. 320, 295 (1999).

    Article  ADS  Google Scholar 

  39. I. Antoniadis, Phys. Lett. B246 (1990) 377.

    MathSciNet  Google Scholar 

  40. C. Bachas, unpublished (1995).

    Google Scholar 

  41. T.R. Taylor and G. Veneziano, Phys. Lett. B212 (1988) 147; K. R. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B436 (1998) 55 [hep-ph/9803466]_; Z. Kakushadze and T.R. Taylor, hep-th/9905137.

    Google Scholar 

  42. J. Scherk and J.H. Schwarz, Phys. Lett. B82 (1979) 60; and Nucl. Phys. B153 (1979) 61; R. Rohm, Nucl. Phys. B237 (1984) 553; S. Ferrara, C. Kounnas and M. Porrati, Nucl. Phys. B304 (1988) 500; S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Nucl. Phys. B3l8 (1989) 75.

    Google Scholar 

  43. C. Bachas, hep-th/9503030; and in Topics in QFT, D. Tchrakian ed. (World Scientific, 1995) [hep-th/9509067]; M. Berkooz, M.R Douglas and R. G. Leigh, Nucl. Phys. B480 (1996) 265 [hep-th/9606139].

    Google Scholar 

  44. M. Dine and N. Seiberg, Nucl. Phys. B301 (1988) 357; T. Banks and L.J. Dixon, Nucl. Phys. B307 (1988) 93.

    Article  MathSciNet  ADS  Google Scholar 

  45. I. Antoniadis, C. Bachas, D. Lewellen and T. Tomaras, Phys. Lett. B207 (1988) 441.

    ADS  Google Scholar 

  46. J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. For reviews see J. Polchinski, hep-th/9611050; W. I. Taylor, hep-th/9801182; C. P. Bachas, hep-th/9806199.

    Google Scholar 

  48. E. Witten, Nucl. Phys. B460 (1996) 541, [hep-th/9511030].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. P. Horava and E. Witten, Nucl. Phys. B460 (1996) 506, [hepth/ 9510209]; and Nucl. Phys. B475 (1996) 94, [hep-th/9603142].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. V. Rubakov and M. Shaposhnikov, Phys. Lett. B125 (1983) 136; K. Akama, Lecture Notes in Physics 176, K. Kikkawa et al eds. (Springer Verlag 1983), [hep-th/0001193]; G.W. Gibbons and D.L. Wiltshire, Nucl. Phys. B287 (1987) 717.

    Google Scholar 

  51. G. Pradisi and A. Sagnotti, Phys. Lett. B216 (1989) 59; J. Dai, R.G. Leigh and J. Polchinski, Mod. Phys. Lett. A4 (1989) 2073; P. Horava, Phys. Lett. B231 (1989) 251; M. Bianchi and A. Sagnotti, Phys.Lett. B247 (1990) 517.

    MathSciNet  Google Scholar 

  52. J. Scherk, in Unification of the Fundamental Interactions, S. Ferrara and P. Van Nieuwenhuizen eds. (Plenum Press, New York, 1980).

    Google Scholar 

  53. V.A. Kuzmin, I. Tkachev, M. Shaposhnikov, JETP Lett. 36 (1982) 59; J.E. Moody and F. Wilczek, Phys. Rev. D30 (1984) 130; A. De Rujula, Phys. Lett. B180 (1986) 213.

    ADS  Google Scholar 

  54. T.R Taylor and G. Veneziano, Phys. Lett. B213 (1988) 450; J. Ellis, N.C. Tsamis and M. Voloshin, Phys.Lett. B194 (1987) 291; S. Dimopoulos and G. F. Giudice, Phys. Lett. B379 (1996) 105 [hep-ph/9602350]_and references therein.

    Google Scholar 

  55. A. Kehagias and K. Sfetsos, Phys. Lett. B 472, 39 (2000) [hepph/ 9905417]_.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. N. Arkani-Hamed and S. Dimopoulos, hep-ph/9811353.

    Google Scholar 

  57. G.F. Giudice, R Rattazzi and J.D. Wells, Nucl. Phys. B544 (1999) 3 [hep-ph/9811291]; E.A. Mirabelli, M. Perelstein and M.E. Peskin, Phys. Rev. Lett. 82 (1999) 2236 [hep-ph/9811337]; T. Han, J.D. Lykken, R.-J. Zhang, Phys. Rev. D59 (1999) 105006 [hep-ph/9811350]; J.L. Hewett, Phys. Rev. Lett. 82 (1999) 4765 [hep-ph/9811356]; S. Nussinov and R. Shrock; Phys. Rev. D59 (1999) 105002 [hepph/ 9811323].

    Article  ADS  Google Scholar 

  58. See for example H.P. Nilles, Phys. Rep. 110C (1984) 1.

    Article  ADS  Google Scholar 

  59. A. Hashimoto and I. Klebanov, Nucl. Phys. Proc. Suppl. B55 (1997) 118, [hep-th/9611214.

    Article  MathSciNet  ADS  Google Scholar 

  60. D. M. Ghilencea and G. G. Ross, Phys. Lett. B 480, 355 (2000) [hep-ph/0001143].

    Article  ADS  Google Scholar 

  61. I. Antoniadis, E. Kiritsis and T. N. Tomaras, Phys. Lett. B 486, 186 (2000) [hep-ph/0004214].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. G. Aldazabal, A. Font, L. E. Ibanez and G. Violero, Nucl. Phys. B536 (1998) 29; L. E. Ibanez, R. Rabadan and A. M. Uranga, Nucl. Phys. B542 (1999) 112; I. Antoniadis, C. Bachas and E. Dudas, Nucl. Phys.B560 (1999) 93, [hep-th/9906039.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bachas, C. (2001). Scales of String/M Theory. In: Baulieu, L., Green, M., Picco, M., Windey, P. (eds) Progress in String Theory and M-Theory. NATO Science Series, vol 564. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0852-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0852-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7034-5

  • Online ISBN: 978-94-010-0852-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics