Modeling the metabolism of Penicillin-G formation

  • W. M. van Gulik
  • W. A. van Winden
  • J. J. Heijnen

Abstract

Micro-organisms have been used since many decades for the production of valuable chemicals for food, pharmaceutical and bulk industries. Examples are amino acids, vitamins, antibiotics or alcohols and organic acids (Table VII.1). Improvement of the production properties has been achieved using random classical mutation techniques. The development of recombinant-DNA techniques, the unraveling of complete genomes and genome wide information measurement (DNA chips) have recently opened the possibility of precise modifications in microbial metabolism. The goals of such “rational metabolic engineering” are “de novo” or improved production of desirable chemical compounds. Rational metabolic engineering opens the possibility to use micro-organisms for the production of a wider scope of bulk and fine chemicals. This is called the “cell factory concept”.
Table VII.1

Microbial production processes

Product

Market volume (tons/yr.)

Lysine

100.000

Glutamic acid

1000.000

Functional proteins

10.000

ß-lactam antibiotics

45.000

Ethanol

25.000.000

Lactic acid

50.000

Keywords

Fermentation Cysteine Pyruvate Cytosol Aspergillus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

§9 References

  1. 1.
    Nielsen J, Jørgensen HS. 1995. Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnol. Prog. 11: 299–305.CrossRefGoogle Scholar
  2. 2.
    Pissara P, Nielsen J, Bazin MJ. 1996. Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 51:168–176.CrossRefGoogle Scholar
  3. 3.
    Theilgaard HA, Nielsen J. 1999. Metabolic control analysis of the penicillin biosynthetic pathway: the influence of the LLD-ACV: bisACV ratio on the flux control. Antonie Van Leeuwenhoek 75:145–154.CrossRefGoogle Scholar
  4. 4.
    Henriksen CM, Nielsen J, Villadsen J. 1998. Cyclization of alpha-aminoadipic acid into the delta-lactam 6-oxo-piperidine-2-carboxylic acid by Penicillium chrysogenum. J. Antibiot. 51: 99–106.CrossRefGoogle Scholar
  5. 5.
    Jørgensen HS, Nielsen J, Villadsen J, Møllgaard H. 1995. Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46:117–131.CrossRefGoogle Scholar
  6. 6.
    Henriksen CM, Christensen LH, Nielsen J, Villadsen J. 1996. Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum. J. Biotechnol. 45:149–164.CrossRefGoogle Scholar
  7. 7.
    Stephanopoulos G, Vallino JJ. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681.CrossRefGoogle Scholar
  8. 8.
    Vallino JJ, Stephanopoulos G. 1994a. Carbon Flux Distribution at the Pyruvate Branch Point in Corynebacterium glutamicum during Lysine Overproduction. Biotechnol. Prog. 10: 320–326.CrossRefGoogle Scholar
  9. 9.
    Vallino JJ, Stephanopoulos G. 1994b. Carbon Flux Distribution at the Glucose 6-phosphate Branch Point in Corynebacterium glutamicum during Lysine Overproduction. Biotechnol. Prog. 10: 327–334.CrossRefGoogle Scholar
  10. 10.
    Cooney CL, Acevedo F, 1977. Theoretical conversion yields for penicillin synthesis. Biotechnol.Bioeng. 19:1449–1462.CrossRefGoogle Scholar
  11. 11.
    Hersbach GJM, Van der Beck CP, Van Dijk PWM, 1984. The penicillins: properties, biosynthesis and fermentation. Biotechnol.Ind.Antibiot. 22:45–140.Google Scholar
  12. 12.
    vanGulik WM, Heijnen JJ, 1995. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48:681–698.CrossRefGoogle Scholar
  13. 13.
    Vanrolleghem PA, deJong-Gubbels P, vanGulik WM, Pronk JT, vanDijken JP, Heijnen JJ, 1996. Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies. Biotechnol. Prog. 12:434–448.CrossRefGoogle Scholar
  14. 14.
    Verduyn C, Stouthamer, AH, Scheffers, WA, vanDijken, JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59:49–63.CrossRefGoogle Scholar
  15. 15.
    Verduyn C, Postma E, Scheffers WA, Dijken JPv, 1992. Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517.CrossRefGoogle Scholar
  16. 16.
    Nielsen J, 1995. Physiological engineering aspects of Penicillium chrysogenum. Habilitationsschrift, Technical University of Denmark, Lyngby, Denmark, 1995.Google Scholar
  17. 17.
    van Gulik, de Laat, W.T.A.M., Vinke, J.L., Heijnen, J.J. (2000) Application of Metabolic Flux Analysis for the Identification of Metabolic Bottlenecks in the Biosynthesis of Penicillin-G. Biotech. Bioeng., 68,6, 602–618.CrossRefGoogle Scholar
  18. 18.
    Osmani SA, Scrutton C, 1983. The sub-cellular localisation of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur.J.Biochem. 133:551–560.CrossRefGoogle Scholar
  19. 19.
    Osmani SA, Scrutton MC, 1985. The sub-cellular localisation and regulatory properties of pyruvate carboxylase from Rhizopus arrhizus. Eur.J.Biochem. 147:119–128.CrossRefGoogle Scholar
  20. 20.
    Pronk JT, Steensma HY, vanDijken JP, 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633.CrossRefGoogle Scholar
  21. 21.
    Bercovitz A, Peleg Y, Battat E, Rokem JS, Goldberg I, 1990. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains. Appl.Environ.Microbiol. 56:1594–1597.Google Scholar
  22. 22.
    Bruinenberg PM, vanDijken JP, Scheffers WA, 1983. An enzymic analysis of NADPH production and consumption in Candida utilis. J.Gen.Microbiol. 129:965–971.Google Scholar
  23. 23.
    Treichler H-J, Liersch M, Nüesch J, Döbeli H. 1979. Role of Sulfur Metabolism in Cephalosporin C and Penicillin Biosynthesis In: OK Sebek and AL Laskin (eds) Genetics of Industrial Microorganisms. Washington DC: American Society for Microbiology pp 97–104.Google Scholar
  24. 24.
    Dobeli H, Nuesch J. 1980. Regulatory properties of O-acetyl-L-serine sulfhydrylase of Cephalosporium acremonium: evidence of an isoenzyme and it’s importance in Cephalosporin C biosynthesis. Antimicrob. Agents Chemother. 18:111–117.CrossRefGoogle Scholar
  25. 25.
    Østergaard S, Theilgaard HA, Nielsen J. 1998. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 50: 663–668.CrossRefGoogle Scholar
  26. 26.
    Bender DA, 1985. Amino acid metabolism. John Wiley & Sons, New York.Google Scholar
  27. 27.
    Smith JE, Berry DR, 1976. The filamentous fungi, volume 2: Biosynthesis and metabolism. Edward Arnold publishers Ltd., London.Google Scholar
  28. 28.
    Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP 1993. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. J. Biol. Chem. 268: 665–671.Google Scholar
  29. 29.
    Müller WH, VanderKrift TP, Krouwer AJ, Wosten HA, VanderVoort LH, Smaal EB, Verkleij AJ. 1991. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO. J. 10(2): 489–495.Google Scholar
  30. 30.
    Serrano R. 1988. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi Biochim. Biophys. Acta 947: 1–28.CrossRefGoogle Scholar
  31. 31.
    Boles E, Hollenberg CP. 1997. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21: 85–111.CrossRefGoogle Scholar
  32. 32.
    Does AL, Bisson LF. 1989. Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl. Environ. Microbiol. 55: 159–164.Google Scholar
  33. 33.
    Kilian SG, VanUden N. 1988. Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 27: 545–548.Google Scholar
  34. 34.
    Cassio F, Leao C, VanUden N. 1987. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology 53–3: 509–513.Google Scholar
  35. 35.
    Leao C, VanUden N. 1986. Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl. Microbiol. Biotechnol. 23: 389–393.CrossRefGoogle Scholar
  36. 36.
    Hillenga DJ, Versantvoort HJ, VanderMolen S, Driessen AJ, Konings WN. 1995. Penicillium chrysogenum takes up the penicillin G precursor Phenylacetic acid by passive diffusion. Appl. Environ. Microbiol. 61(7): 2589–2595.Google Scholar
  37. 37.
    Hackette SL, Skye GE, Burton C, Segel IH. 1970. Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. J. Biol. Chem. 245: 4241–4250.Google Scholar
  38. 38.
    Roon RJ, Levy JS, Larimore F. 1977. Negative interactions between amino acid and methylamine/ammonia transport systems of Saccharomyces cerevisiae. The Journal of Biological Chemistry 252-11: 3599–3604.Google Scholar
  39. 39.
    Eddy AA. 1982. Mechanisms of solute transport in selected eukaryotic microorganisms. Adv. Microb. Physiol. 23: 1–78.CrossRefGoogle Scholar
  40. 40.
    Blatt MR, Maurousset L, Meharg AA. 1997. High-affinity NO3−H+ cotransport in the fungus Neurospora–induction and control by pH and membrane voltage. J. Membr. Biol. 160: 59–76.CrossRefGoogle Scholar
  41. 41.
    Walker JE. 1992. The mitochondrial transporter family. Current opinion in structural biology 2: 519–526.CrossRefGoogle Scholar
  42. 42.
    Palmieri F. 1994. Mitochondrial carrier proteins. FEBS Lett. 346: 48–54.CrossRefGoogle Scholar
  43. 43.
    Nicolay K, Veenhuis M, Douma AC, Harder W. 1987. A 31P NMR study of the internal pH of yeast peroxisomes. Arch. Microbiol. 147: 37–41.CrossRefGoogle Scholar
  44. 44.
    Douma AC, Veenhuis M, Suiter GJ, Harder W. 1987. A proton translocating adenosine triphosphatase is associated with the peroxisomal membrane of yeasts. Arch. Microbiol. 147: 42–47.CrossRefGoogle Scholar
  45. 45.
    Elgersma Y, Vanroermund CWT, Wanders RJA, Tabak, HF. 1995. Peroxisomal and mitochondrial carnithine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO. J. 14: 3472–3479.Google Scholar
  46. 46.
    Roels, JA 1983. Energetics and kinetics in biotechnology. Elsevier Biomedical, Amsterdam.Google Scholar
  47. 47.
    Andre B, 1995. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11:1575–1611.CrossRefGoogle Scholar
  48. 48.
    Hinnebusch AG, Liebman SW, 1991. Protein synthesis and translational control in Saccharomyces cerevisiae. In: Broach JR, Pringle JR, Jones EW (eds.), The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, pp. 627–735.Google Scholar
  49. 49.
    Rigoulet M, Leverve X, Fontaine E, Ouhabi R, Guerin B, 1998. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: Dependence upon both fluxes and forces. Mol.Cell.Biochem. 184:35–52.CrossRefGoogle Scholar
  50. 50.
    Kallow W, von Döhren H, Kleinkauf H, 1998. Penicillin biosynthesis — energy requirement for tripeptide precursor formation by delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Acremonium chrysogenum. Biochemistry 37:5947–5952.CrossRefGoogle Scholar
  51. 51.
    Senior AE, 1988. ATP synthesis by oxidative phosphorylation. Physiol.Rev. 68(1):177–231.Google Scholar
  52. 52.
    Zubay, G. 1988. Biochemistry, 2. ed.., Macmillan Publishing Company, New York.Google Scholar
  53. 53.
    vanGulik, WM, Antoniewicz, MR, deLaat, WTAM, Vinke, JL, Heijnen, JJ. (2001) Energetics of growth and penicillin production in a high producing strain of Penicillium chrysogenum. Biotechnol. Bioeng. 72:185–193.CrossRefGoogle Scholar
  54. 54.
    Light PA, Garland PB, 1971. A comparison of mitochondria from Torulopsis utilis grown in continuous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth limiting nutrient. Biochem.J. 124:123–134.Google Scholar
  55. 55.
    Aiking H, Sterkenburg A, Tempest DW, 1977. Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria of Candida utilis NCYC 321. Arch.Microbiol. 113:65–72.CrossRefGoogle Scholar
  56. 56.
    Onishi, T., 1973. Mechanisms of electron transport and energy conversion in the site 1 region of the respiratory chain. Biochim. Biophys. Acta 301:105–128.CrossRefGoogle Scholar
  57. 57.
    Bonnet JABAF, deKok, HE, Roels, JA, 1980. The growth of Saccharomyces cerevisiae CBS 426 on mixtures of glucose and ethanol: a model. Antonie van Leeuwenhoek 46:565–576.CrossRefGoogle Scholar
  58. 58.
    Ferguson SJ, 1986. The ups and downs of P/O ratios (and the question of non-integral coupling stoichiometries for oxidative phosphorylation and related processes). TIBS 11:351–353.Google Scholar
  59. 59.
    Henriksen CM, Nielsen J, Villadsen J, 1998. Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential of Penicillium chrysogenum. Biotechnol.Bioeng. 60:761–766.CrossRefGoogle Scholar
  60. 60.
    Mason HRS, Righelato RC, 1976. Energetics of fungal growth: the effect of growth-limiting substrate on respiration of Penicillium chrysogenum. J.Appl.Chem.Biotechnol. 26:145–152.CrossRefGoogle Scholar
  61. 61.
    Verduyn C, Postma E, Scheffers WA, Dijken JPv, 1990. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J.Gen.Microbiol. 136:405–412.CrossRefGoogle Scholar
  62. 62.
    Righelato RC, Trinci AP, Pirt SJ, Peat A, 1968. The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidation of Penicillium chrysogenum. J.Gen.Microbiol. 50:399–412.CrossRefGoogle Scholar
  63. 63.
    Christensen LH, Henriksen CM, Nielsen J, Villadsen J, Egel-Mitani M, 1995. Continuous cultivation of Penicillium chrysogenum. Growth on glucose and penicillin production. J.Biotechnol. 42:95–107.CrossRefGoogle Scholar
  64. 64.
    Wang NS, Stephanopoulos G. 1983. Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng. 25: 2177–2208.CrossRefGoogle Scholar
  65. 65.
    Kluge M, Siegmund D, Diekmann H, Thoma M. 1992. A model for penicillin production with and without temperature shift after the growth phase. Appl. Microbiol. Biotechnol. 36: 446–451.CrossRefGoogle Scholar
  66. 66.
    Wittier R, Schügerl K. 1985. Interrelation between penicillin productivity and growth rate. Appl. Microbiol. Biotechnol. 21: 348–355.Google Scholar
  67. 67.
    Ryu DDY, Hospodka J. 1980. Quantitative physiology of Penicillium chrysogenum in penicillin fermentations. Biotechnol. Bioeng. 22: 289–298.CrossRefGoogle Scholar
  68. 68.
    Pirt SJ, Callow DS. 1960. Studies of the Growth of Penicillium chrysogenum in Continuous Flow Culture with Reference to Penicillin Production. J. Appl. Bacteriol. 23: 87–98.CrossRefGoogle Scholar
  69. 69.
    Pirt SJ, Righelato, RC. 1967. Effect of growth rate on the synthesis of penicillin by Penicillium chrysogenum in batch and chemostat cultures. Appl. Microbiol. 15:1284–1290.Google Scholar
  70. 70.
    Loftus TM, Hall LV, Anderson SL, McAlister-Henn L, 1994. Isolation, characterization, and disruption of the yeast gene encoding cytosolic NADP-specific isocitrate dehydrogenase. Biochemistry 33:9661–9667.CrossRefGoogle Scholar
  71. 71.
    Hult K, Veide A, Gatenbeck S, 1980. The distribution of the NADPH regenerating mannitol cycle among fungal species. Arch.Microbiol. 128:253–255.CrossRefGoogle Scholar
  72. 72.
    Postma E, Verduyn C, Scheffers WA, vanDijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Env. Microbiol. 53:468–477.Google Scholar
  73. 73.
    Djavadi FHS, Moradi M, Djavadi-Ohaniance L, 1980. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae. Eur.J.Biochem. 107:501–504.CrossRefGoogle Scholar
  74. 74.
    Bruinenberg PM, vanDijken JP, Kuenen JG, Scheffers WA, 1985. Oxidation of NADH and NADPH by mitochondria from the yeast Candida utilis. J.Gen.Microbiol. 131:1043–1051.Google Scholar
  75. 75.
    Prodouz KN, Garret RH. 1981. Neurospora crassa NAD(P)H-nitrite-reductase. J. Biol. Chem. 256: 9711–9717.Google Scholar
  76. 76.
    Sengupta S, Shaila MS, Rao GR. 1997. In vitro and in vivo regulation of assimilatory nitrite reductase from Candida utilis. Arch. Microbiol. 168: 215–224.CrossRefGoogle Scholar
  77. 77.
    Sonntag, K., Eggeling, L, De Graaf, A.A, Sahm, H. (1993) Flux Partitioning in the Split Pathway of Lysine Synthesis in Corynebacterium glutamicum. Eur. J. Biochem., 213, 1325–1331.CrossRefGoogle Scholar
  78. 78.
    Wiechert, W., de Graaf, A.A. (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and Simulation of Carbon Isotope Labeling Experiments. Biotech. Bioeng., 55,1, 101–117.CrossRefGoogle Scholar
  79. 79.
    Marx, A., de Graaf, A.A., Wiechert, W., Eggeling, L., Sahm, H. (1996) Determination of the Fluxes in the Central Metabolism of Corynebacterium glutamicum by Nuclear Magnetic Resonance Spectroscopy Combined With Metabolic Balancing. Biotech. Bioeng., 49,2, 111–129.CrossRefGoogle Scholar
  80. 80.
    Marx, A., Eikmans, B.J., Sahm, H., de Graaf, A.A., Eggeling, L. (1999) Response of the Central Metabolism in Corynebacterium glutamicum to the use of an NADH-Dependent Glutamate Dehydrogenase. Metab. Eng., 1,1, 35–48.CrossRefGoogle Scholar
  81. 81.
    Schmidt, K., Marx, A., de Graaf, A.A., Wiechert, W., Sahm, H., Nielsen, J., Villadsen, J. (1998) 13C Tracer Experiments and Metabolite Balancing for Metabolic Flux Analysis: Comparing Two Approaches. Biotech. Bioeng., 58,2&3, 254–257CrossRefGoogle Scholar
  82. 82.
    Schmidt, K, Carlsen, M., Nielsen, J., Villadsen, J. (1997) Modelling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotech. Bioeng., 55,6, 831–840.CrossRefGoogle Scholar
  83. 83.
    Szyperski, T. (1998) 13C-NMR, MS and Metabolic Flux Balancing in Biotechnology Research. Quart. Rev. Biophys., 31,1, 41–106.CrossRefGoogle Scholar
  84. 84.
    van Winden, W.A., Verheijen, P.J.T., Heijnen, J.J. (2000a) Possible Pitfalls of Flux Calculations Based on 13C-Labeling, Accepted for publication in Metab. Eng., October 2000Google Scholar
  85. 85.
    van Winden, W.A., Heijnen, J.J., Verheijen, P.J.T., Grievink, J. (2000b) A Priori Analysis of Metabolic Flux Identifiability from 13C-Labeling Data, Submitted to Biotech. Bioeng., August 2000Google Scholar
  86. 86.
    van Winden, W.A., Schipper, D., Verheijen, P.J.T., Heijnen, J.J. (2000c) Innovations in the Generation and Analysis of 2D [13C,1H] COSY Spectra for Flux Analysis Purposes, Manuscript in preparationGoogle Scholar
  87. 87.
    Theilgaard HA, Nielsen J, 1999. Metabolic control analysis of the penicillin biosynthetic pathway: the influence of the LLD-ACV: bisACV ratio on the flux control. Antonie Van Leeuwenhoek International Journal Of General And Molecular Microbiology 75:145–154.CrossRefGoogle Scholar
  88. 88.
    Martin JE, Casqueiro J, Kosalkova K, Marcos AT, Gutierrez S, 1999. Penicillin and cephalosporin biosynthesis: Mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek International Journal Of General And Molecular Microbiology 75:21–31CrossRefGoogle Scholar
  89. 89.
    vanGulik, WM, Noorman, H, Vinke, JL, Heijnen, JJ (2001) Kinetics of penicillin-G production in Penicillium chrysogenum. Paper in preparation.Google Scholar
  90. 90.
    Heijnen, JJ. (2000) Unified kinetic and MCA based models in metabolic engineering. Paper presented at Metabolic Engineering III, Colorado Springs, USA.Google Scholar
  91. 91.
    Visser, D, Heijnen, JJ. (2001) Dynamic simulation and metabolic re-design of a branched pathway using LinLog kinetics. Paper in preparation.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • W. M. van Gulik
    • 1
  • W. A. van Winden
    • 1
  • J. J. Heijnen
    • 1
  1. 1.Kluyver Laboratory for BiotechnologyTechnical University DelftDelft

Personalised recommendations