Skip to main content
  • 249 Accesses

Abstract

A new description of chaos in both classical and quantum dynamical systems is discussed in the context of information dynamics, which is called the chaos degree. The algorithm computing this degree is shown. Quantum algorithm solving the SAT problem, on of the NP complete problems, is studied and it is discussed that the SAT problem can be solved in polynomial time when a certain mixture of two orthogonal vectors is physically detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi, L. and Ohya, M.: Compound channels, transition expectations and liftings, Appl. Math. Optim. 39 (1999), 33–59.

    Article  MathSciNet  MATH  Google Scholar 

  2. Accardi, L., Ohya, M. and Watanabe, N.: Dynamical entropy through Markov chain, Open Systems Inform. Dynam. 4(1) (1997), 71–87.

    Article  MATH  Google Scholar 

  3. Accardi, L., Ohya, M. and Watanabe, N.: Note on quantum dynamical entropy, Rep. Math. Phys. 38 (1996), 457–469.

    Article  MathSciNet  MATH  Google Scholar 

  4. Alicki, R.: Quantum Geometry of Noncommutative Bernoulli Shifts, Banach Center Publications, 1991.

    Google Scholar 

  5. Akashi, S.: The asymptotic behavior of ɛ-entropy of a compact positive operator, J. Math. Anal. Appl. 153 (1990), 250–257.

    Article  MathSciNet  MATH  Google Scholar 

  6. Araki, H.: Relative entropy for states of von Neumann algebras, Publ. RIMS Kyoto Univ. 11 (1976), 809–833.

    Article  MathSciNet  MATH  Google Scholar 

  7. Alligood, K. T., Sauer, T. D. and Yorke, J. A.: Chaos — An Introduction to Dynamical Systems-, Textbooks in Math. Sci., Springer, New York, 1996.

    Google Scholar 

  8. Benatti, F.: Deterministic Chaos in Infinite Quantum Systems, Trieste Notes in Phys., Springer, New York, 1993.

    Book  Google Scholar 

  9. Billingsley, P.: Ergodic Theory and Information, Wiley, New York, 1965.

    MATH  Google Scholar 

  10. Connes, A., Narnhofer, H. and Thirring, W.: Dynamical entropy of C*-algebras and von Neumann algebras, Comm. Math. Phys. 112 (1987), 691–719.

    Article  MathSciNet  MATH  Google Scholar 

  11. Connes, A. and Størmer, E.: Entropy for automorphisms of II1 von Neumann algebras, Acta Math. 134 (1975), 289–306.

    Article  MathSciNet  MATH  Google Scholar 

  12. Devaney, R. L.: An Introduction to Chaotic Dynamical Systems, Benjamin, New York, 1986.

    MATH  Google Scholar 

  13. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. Royal Soc. London A 400 (1985), 97–117.

    Article  MathSciNet  MATH  Google Scholar 

  14. Deutsch, D. and Jozsa, R.: Rapid solution of problems by quantum computation, Proc. Royal Soc. London A 439 (1992), 553–558.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekert, A. and Jozsa, R.: Quantum computation and Shor’s factoring algorithm, Rev. Modern Phys. 68(3) (1996), 733–753.

    Article  MathSciNet  Google Scholar 

  16. Emch, G. G.: Positivity of the K-entropy on non-Abelian K-flows, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 29 (1974), 241–252.

    Article  MathSciNet  MATH  Google Scholar 

  17. Feymann, R.: Quantum mechanical computer, Optics News 11 (1985), 11–20.

    Article  Google Scholar 

  18. Hasegawa, H.: Dynamical formulation of quantum level ststistics, Open Systems Inform. Dynam. 4 (1997), 359–377.

    Article  MATH  Google Scholar 

  19. Hida, T.: Complexity in white noise analysis, The Second International Conference on Quantum Information, Meijyou Univ., 1999.

    Google Scholar 

  20. Ingarden, R. S., Kossakowski, A. and Ohya, M.: Information Dynamics and Open Systems, Kluwer Acad. Publ., Dordrecht, 1997.

    MATH  Google Scholar 

  21. Inoue, K., Kossakowski, A. and Ohya, M.: A description of quantum chaos and its application to spin systems, SUT Preprint.

    Google Scholar 

  22. Inoue, K., Ohya, M. and Sato, K.: Application of chaos degree to some dynamical systems, Chaos, Solitons and Fractals 11 (2000), 1377–1385.

    Article  MathSciNet  MATH  Google Scholar 

  23. Inoue, K., Ohya, M. and Volovich, I. V.: Semiclassical properties and chaos degree for the quantum bakers map, submitted.

    Google Scholar 

  24. Kossakowski, A., Ohya, M. and Watanabe, N.: Quantum dynamical entropy for completely positive operator, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(1) (1999), 267–282.

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsuoka, T. and Ohya, M.: Fractal dimensions of states and its application to Ising model, Rep. Math. Phys. 36 (1995), 365–379.

    Article  MathSciNet  MATH  Google Scholar 

  26. Misiurewicz, M.: Absolutely continuous measutres for certain maps of interval, Publ. Math. IHES 53 (1981), 17–51.

    MathSciNet  MATH  Google Scholar 

  27. Muraki, N. and Ohya, M.: Entropy functionals of Kolmogorov Sinai type and their limit theorems, Lett. Math. Phys. 36 (1996), 327–335.

    Article  MathSciNet  MATH  Google Scholar 

  28. von Neumann, J.: Die Mathematischen Grundlagen der Quantenmechanik, Springer, Berlin, 1932.

    Google Scholar 

  29. Ohya, M.: Quantum ergodic channels in operator algebras, J. Math. Anal. Appl. 84 (1981), 318–327.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ohya, M.: On compound state and mutuai information in quantum information theory, IEEE Trans. Inform. Theory 29 (1983), 770–774.

    Article  MATH  Google Scholar 

  31. Ohya, M.: Note on quantum probability, Lett. Nuovo Cimento 38 (1983), 402–406.

    Article  MathSciNet  Google Scholar 

  32. Ohya, M.: Some aspects of quantum information theory and their applications to irreversible processes, Rep. Math. Phys. 27 (1989), 19–47.

    Article  MathSciNet  MATH  Google Scholar 

  33. Ohya, M.: Information dynamics and its application to optical communication processes, In: Lecture Notes in Phys. 378, Springer, New York (1991) pp. 81–92.

    Google Scholar 

  34. Ohya, M.: Fractal dimension of states, Quantum Probab. Related Topics 6 (1991), 359–369.

    Article  MathSciNet  Google Scholar 

  35. Ohya, M.: State change, complexity and fractal in quantum systems, Quantum Comm. Measure. 2 (1995), 309–320.

    MathSciNet  Google Scholar 

  36. Ohya, M.: Entropy transmission in C*-dynamical systems, J. Math. Anal. Appl. 100 (1984), 222–235.

    Article  MathSciNet  MATH  Google Scholar 

  37. Ohya, M.: Fundamentals of quantum mutual entropy and capacity, Open Systems Inform. Dynam. 6(1) (1999), 69–78.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ohya, M.: Complexity and fractal dimensions for quantum states, Open Systems Inform. Dynam. 4 (1997), 141–157.

    Article  MATH  Google Scholar 

  39. Ohya, M.: Applications of information dynamics to genome sequences, SUT Preprint.

    Google Scholar 

  40. Ohya, M.: Complexities and their applications to characterization of chaos, Internat. J. Theoret. Phys. 37(1) (1998), 495–505.

    Article  MathSciNet  MATH  Google Scholar 

  41. Ohya, M.: Foundation of entropy, complexity and fractal in quantum systems, Internat. Congr. of Probability Toward 2000, pp. 263–286.

    Google Scholar 

  42. Ohya, M.: Mathematical Foundation of Quantum Computer, Maruzen Publ. Company, 1999.

    Google Scholar 

  43. Ohya, M. and Masuda, A.: NP problem in quantum algorithm, Open Systems Infom. Dynam. 7(1) (2000), 33–39.

    Article  MathSciNet  MATH  Google Scholar 

  44. Ohya, M. and Petz, D.: Quantum Entropy and Its Use, Springer, New York, 1993.

    Book  MATH  Google Scholar 

  45. Papadimitriou, C. H.: Computational Complexity, Addison-Wesley, Reading, Mass., 1995.

    Google Scholar 

  46. Shaw, R.: Strange attractors, chaotic behavior and information flow, Z. Naturforsch 36.a (1981), 80–112.

    Google Scholar 

  47. Shor, P. W.: Algorithm for quantum computation: Discrete logarithm and factoring algorithm, Proc. 35th Annual IEEE Sympos. Foundation of Computer Science, 1994, 124–134.

    Google Scholar 

  48. Toda, M.: Crisis in chaotic scattering of a highly excited van der Waals complex, Phys. Rev. Lett 74(14) (1995), 2670–2673.

    Article  Google Scholar 

  49. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory, Comm. Math. Phys. 54 (1977), 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  50. Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information), Kodai Math. Sem. Rep. 14 (1962), 59–85.

    Article  MathSciNet  MATH  Google Scholar 

  51. Ohya, M. and Volovich, I. V.: Quantum computing, NP-complete problems and chaotic dynamics, quant-ph/9912100, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luigi Accardi Hui-Hsiung Kuo Nobuaki Obata Kimiaki Saito Si Si Ludwig Streit

Additional information

Dedicated to Professor T. Hida for his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ohya, M. (2001). Complexity in Dynamics and Computation. In: Accardi, L., Kuo, HH., Obata, N., Saito, K., Si, S., Streit, L. (eds) Recent Developments in Infinite-Dimensional Analysis and Quantum Probability. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0842-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0842-6_21

  • Received:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3842-3

  • Online ISBN: 978-94-010-0842-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics