Advertisement

DNA Condensation Caused by Ligand Binding May Serve as a Sensor

  • V. B. Teif
  • D. Y. Lando
Conference paper

Abstract

DNA is a promising construction material for the engineering of artificial nanostractured devices [1]. One of possible DNA implications in bionanodevices is detecting of metal ions. This possibility is based on the fact that metal ions may preferentially bind to definite DNA conformation and thus metal ion binding may give rise to transition between A-, B-, or Z-DNA [2]. Another approach based on utilizing the specific DNA sequence required to detect specific metals was reported recently [3]. In this method single-stranded DNA forms “pocket” that accepts only lead ions. Here we consider a potential DNA-based sensor detecting metal ions which is based on the phenomenon of DNA condensation.

Keywords

Phase Transition Bivalent Metal Adsorbed Ligand Ligand Distribution Trigger Gene Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Niemeyer, C. M.: Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology, Curr. Opin. Chem. Biol 4 (2000), 609–618.CrossRefGoogle Scholar
  2. 2.
    Daune, M.: Binding of divalent cations to DNA, Studia Biophysica 24 (1970), 287–297.Google Scholar
  3. 3.
    Li, J., Lu, Y.: A highly sensitive and selective catalitic DNA biosensor for lead ions, J. Am. Chem. Soc. 122 (2000), 10466–10467.CrossRefGoogle Scholar
  4. 4.
    Jary, D., Sicorav, J.-L.: Cyclization of globular DNA. Implications for DNA-DNA interactions in vivo, Biochemistry 38 (1999), 3223–3227.CrossRefGoogle Scholar
  5. 5.
    Sikorav, J.-L., Church, G. M.: Complementary recognition in condensed DNA: accelerated DNA renaturation, J. Mol. Biol 222 (1991), 1085–1108.CrossRefGoogle Scholar
  6. 6.
    Chaperon, I., Sikorav J.-L.: Renaturation of condensed DNA studied through a decoupling scheme, Biopolymers 46 (1998), 195–200.CrossRefGoogle Scholar
  7. 7.
    Chen, W. Y., Townes, T. M.: Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation, Proc. Natl Acad. Sci. USA 97 (2000), 377–382.CrossRefGoogle Scholar
  8. 8.
    Bloomfield, V. A.: DNA condensation by multivalent cations, Biopolymers 44 (1997) 269–284.CrossRefGoogle Scholar
  9. 9.
    Mel’nikov, S. M., Sergeev, V. G., Yoshikawa, K.: Descrete coil-globule trànsition of large DNA induced by cationic surfactant, J. Am. Chem. Soc 117 (1995) 2401–2408.CrossRefGoogle Scholar
  10. 10.
    Koltover, I., Wagner, K., Safinya, C. R.: DNA condensation in two dimensions, Proc. Natl. Acad. Sci. 97 (2000), 14046–14051.CrossRefGoogle Scholar
  11. 11.
    Lando, D. Y., Teif, V. B.: Long-Range Interactions between Ligands Bound to a DNA Molecule Give Rise to Adsorption with the Character of Phase Transition of the First Kind, J. Biomol. Struct. & Dynam. 18 (2000), 903–911.CrossRefGoogle Scholar
  12. 12.
    Nechipurenko, Y. D.: Binding of small molecules to nucleic acids that form ternary structure, Biophysics (Mosk.) 30 (1985), 231–232.Google Scholar
  13. 13.
    Scatchard, G.: The attraction of proteins for small molecules and ions, Ann. N.-Y. Acad. Sci. 51 (1949), 660–672.CrossRefGoogle Scholar
  14. 14.
    Clement, R. M., Sturm, J. and Daune, M. P.: Interaction of metallic cations with DNA. IV. Specific binding of Mg2+ and Mn2+, Biopolymers 12 (1973), 405–421.CrossRefGoogle Scholar
  15. 15.
    Reulen, J., Gabbay, E. J.: Binding of maganese (II) to DNA and the competitive effect of metal ions and organic cations. An electric paramagnetic resonance study, Biochemistry 14 (1975), 1230–1235.CrossRefGoogle Scholar
  16. 16.
    Blagoi, Yu. P., Galkin, V. L., Gladchenko, G. O., Kornilova, S. V., Sorokin, V. A. and Shkorbatov, A. G.: Metal complexes of nucleic acids in solutions, Naukova Dumka, Kiev (in Russian) (1991).Google Scholar
  17. 17.
    Rifkind, J., Shin, Y. A., Heim, J. M., Eighorn, G. L.: Cooperative disordering of single-stranded polynucleotides through copper crosslinking, Biopolymers 15 (1976), 1879–1902.CrossRefGoogle Scholar
  18. 18.
    Latt, S. A., Sober, H. A.: Protein-nucleic acid interactions. II. Oligopeptide-polyribonucleotide binding studies, Biochemistry 6 (1967), 3293–3306.CrossRefGoogle Scholar
  19. 19.
    Frank-Kamenetskii, M. D., Karapetian, A. T.: To the theory of DNA melting in the presence of low molecular weight compounds, Molecular Biology (Mosk.) 6 (1972), 621–627.Google Scholar
  20. 20.
    Lando, D. Y., Krot, V. I., Frank-Kamenetskii, M. D.: Melting of DNA complexes with extended ligands, Molecular Biology (Mosk.) 9 (1975), 856–860.Google Scholar
  21. 21.
    Blagoi, Yu. P., Sorokin, V. A., Valeev, V. A.: Molecular Biology (Mosk.) 15 (1980), 595–605.Google Scholar
  22. 22.
    Clement, R. M., Sturm, J. and Daune, M. P.: Interaction of metallic cations with DNA VI. Specific binding of Mg++ and Mn++, Biopolymers 12 (1973), 405–421.CrossRefGoogle Scholar
  23. 23.
    Strey, H. H., Podgornik, R., Rau, D. C., Parsegian, V. A.: DNA-DNA interactions, Curr. Opin. Stuct. Biol. 8 (1998), 309–313.CrossRefGoogle Scholar
  24. 24.
    Kornilova, S., Hackl, E., Kapinos, L., Andrushchenco, V. Blagoi, Yu.: DNA interaction with biologically active metal ions. Cooperativity of metal ion binding at compacting of DNA, Acta. Biochim. Pol. 45 (1998), 107–117.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • V. B. Teif
    • 1
    • 2
  • D. Y. Lando
    • 1
  1. 1.Institute of Bioorganic ChemistryBelarus Academy of SciencesMinskBelarus
  2. 2.Institute of Molecular and Atomic PhysicsBelarus Academy of SciencesMinskBelarus

Personalised recommendations