Disordered Dirac Fermions: Three Different Approaches

  • M. J. Bhaseen
  • J.-S. Caux
  • I. I. Kogan
  • A. M. Tsvelik
Part of the NATO Science Series book series (NAII, volume 23)

Abstract

In this paper we compare calculations of the multi-point correlation functions at the critical point of the theory of two-dimensional Dirac particles subject to a random SU(2) non-Abelian gauge potential, obtained by three different methods. Critically reexamining the results obtained using the replica formalism and in the limit of infinité disorder strength and comparing them with the calculations made using the supersymmetric formalism, we demonstrate that this ménage à trois of different approaches leads to identical results. This gives rather remarkable relations between apparently different conformai field theories. We also establish a connection between the problem of Dirac fermions and the problem of dense polymers based on the presence of C = −2 theory in all three different descriptions of the disorder.

Keywords

Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. B. Efetov, Adv. Phys. 32, 53 (1983), see also Supersymmetry in Disorder and Chaos, Cambridge University Press, 1997.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. R. Zirnbauer, cond-mat/9903338.Google Scholar
  3. [3]
    A. Kamenev and Mezard, J. Phys. A 32, 4373 (1999); Phys. Rev. B60, 3944(1999).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    H. Levine, S. B. Libby and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983); A. M. M. Pruisken, Nucl. Phys. B235, 277 (1984); the supersymmetric formulation was given in H. A. Weidenmuller, Nucl. Phys. B290, 87(1987).ADSCrossRefGoogle Scholar
  5. [5]
    N. Read, unpublished.Google Scholar
  6. [6]
    J. Kondev and J. B. Marston, Nucl. Phys. B497, 639 (1997).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. R. Zirnbauer, Ann. Phys. 3, 513 (1994); J. Math. Phys. 38, 2007 (1997); ibid., 40, 2197 (1999).MathSciNetCrossRefGoogle Scholar
  8. [8]
    V.S Dotsenko and V.S Dotsenko, ZhETP, 83, 727 (1982); Adv. Phys. 32, 129 (1983); V. S. Dotsenko, Nucl. Phys. B314, 687 (1989).MathSciNetGoogle Scholar
  9. [9]
    A. W. W. Ludwig, M. P. A. Fisher, R. Shankar and G. Grinstein, Phys. Rev. B 50, 7526 (1994).ADSGoogle Scholar
  10. [10]
    A. A. Nersesyan, A. M. Tsvelik and F. Wenger, Phys. Rev. Lett 72, 2628 (1994); Nucl. Phys. B438, 561 (1995).ADSCrossRefGoogle Scholar
  11. [11]
    J.-S. Caux, I.I. Kogan and A. M. Tsvelik, Nucl. Phys. B466, 444 (1996).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    C. Mudry, C. Chamon and X.-G. Wen, Nucl. Phys. B 466, 383 (1996).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    I.I. Kogan, C. Mudry and À. M. Tsvelik, Phys. Rev. Lett. 77, 707 (1996).ADSCrossRefGoogle Scholar
  14. [14]
    J.-S. Caux, Phys. Rev. Lett. 81, 4196 (1998).ADSCrossRefGoogle Scholar
  15. [15]
    J.-S. Caux, N. Taniguchi and A. M. Tsvelik, Phys. Rev. Lett. 80, 1276, (1997).ADSCrossRefGoogle Scholar
  16. [16]
    J.-S. Caux, N. Taniguchi and A. M. Tsvelik, Nucl. Phys. B525, 621 (1998).MathSciNetADSGoogle Scholar
  17. [17]
    S. Guruswamy, A. LeClair and A. W. W. Ludwig, Nucl. Phys. B583, 475 (2000).MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    I. A. Gruzberg, A. W. W. Ludwig and N. Read, Phys. Rev. Lett. 82, 4524 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    J. L. Cardy, Phys. Rev. Lett., (2000); cond-mat/9911457.Google Scholar
  20. [20]
    V. Gurarie, A. W. W. Ludwig, cond-mat/9911392.Google Scholar
  21. [21]
    I. A. Gruzberg, A. W. W. Ludwig and N. Read, cond-mat/0007254.Google Scholar
  22. [22]
    D. Bernard and A. LeClair, cond-mat/0003075.Google Scholar
  23. [23]
    D. Bernard, in Low-dimensional applications of quantum field theory, Proceedings of the 1995 Cargese School, NATO ASI Series B: Physics Vol. 362 (Plenum Press, New York, 1997); Nucl. Phys. B 441, 471 (1995).MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Rasmussen, Nucl. Phys. B510, 688 (1998).MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A. LeClair, cond-mat/0011413.Google Scholar
  26. [26]
    H. Saleur, Nucl. Phys. B382, 486 (1992).MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. R. Gaberdiel and H. G. Kausch, Nucl. Phys. B538, 631 (1999).MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. J. Bhaseen, cond-mat/0011229Google Scholar
  29. [29]
    M. J. Bhaseen, I. I. Kogan, O. A. Soloview, N. Taniguchi and A. M. Tsvelik, Nucl. Phys. B516Google Scholar
  30. [30]
    V. Gurarie, Nucl. Phys. B410, 535 (1993).MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    Z. Maassarani and D. Serban, Nucl. Phys. B489, 603 (1997).MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Scheunert, W. Nahm and V. Rittenberg, J. Math. Phys. 18, 155 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    M. Scheunert, W. Nahm and V. Rittenberg, 18, 146 (1977).Google Scholar
  34. [34]
    A. Lewis and I.I. Kogan, Nucl. Phys. B509, 687 (1998).MathSciNetADSGoogle Scholar
  35. [35]
    E. Verlinde, Nucl. Phys. B300, 360 (1988).MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A.M. Semihatov and I. Yu. Tipunin, Int. J. Mod. Phys. All, 2721 (1996). 461 (1992).Google Scholar
  37. [37]
    J.-S. Caux, I.I. Kogan, A. Lewis and A. M. Tsvelik, Nucl. Phys. B489, 469 (1996).Google Scholar
  38. [38]
    A. Bilal and I. I. Kogan, PUPT-1482, hep-th/9407151 (unpublished); Nucl. Phys. B449, 569 (1995); hep-th/9503209.MathSciNetADSGoogle Scholar
  39. [39]
    J.L.Cardy, cond-mat/9911024.Google Scholar
  40. [40]
    V. Gurarie and A. W. W. Ludwig, cond-mat/9911392.Google Scholar
  41. [41]
    A. W. W. Ludwig, cond-mat/0012189.Google Scholar
  42. [42]
    A. J. McKane and M. Stone, Ann. Phys. 131, 36 (1981).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. J. Bhaseen
    • 1
  • J.-S. Caux
    • 1
  • I. I. Kogan
    • 1
  • A. M. Tsvelik
    • 1
  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations