Skip to main content

Gibbs States of a Lattice System of Quantum Anharmonic Oscillators

  • Chapter
Noncommutative Structures in Mathematics and Physics

Part of the book series: NATO Science Series ((NAII,volume 22))

  • 330 Accesses

Abstract

Gibbs states of interacting quantum lattice systems are constructed as positive functionals on von Neumann algebras whose elements (observables) represent physical quantities [8], [13]. For the systems, the algebra of observables of every subsystem in a finite subset of the lattice may be represented as the C*-algebra of bounded operators on a Hilbert space, the theory of Gibbs states is quite well elaborated [8]. But if one needs to include into consideration also unbounded operators, the situation becomes much more complicated. In 1975 an approach to the construction of Gibbs states, which uses the integration theory in path spaces, has been initiated [1] (see also [5], [6], [7], [11], [13], [15]). Here the state at a temperature T = β-1 is defined by means of a probability measure μβ on a certain infinite-dimensional space, analogously to the Euclidean quantum field theory. That is the reason why μβ is known as the Euclidean Gibbs state.

Supported in part by the Polish Scientific Research Committee under the Grant 2 PO3A 02915

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albeverio, R. Høegh-Krohn, Homogeneous Random Fields and Quantum Statistical Mechanics, J. Funct. Anal., 19 (1975), 242–279.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, Suppression of Critical Fluctuations by Strong Quantum Effects in Quantum Lattice Systems, Comm. Math. Phys., 194 (1998), 493–521.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, Uniqueness for Gibbs Measures of Quantum Lattices in Small Mass Regime, to appear in Ann. Inst. H. Poincaré Probab. Statist.

    Google Scholar 

  4. S. Albeverio, Yu. Kondratiev, M.Röckner, T.V. Tsikalenko, Uniqueness of Gibbs States on Loop Lattices, C.R. Acad. Sci. Paris, Probabilités/Probability Theory, 342, Série 1 (1997), 1401–1406.

    ADS  Google Scholar 

  5. V.S. Barbulyak, Yu.G. Kondratiev, Functional Integrals and Quantum Lattice Systems: I. Existence of Gibbs States, Rep. Nat. Acad. Sci of Ukraine, No 9 (1991), 38–40.

    MathSciNet  Google Scholar 

  6. V.S. Barbulyak, Yu.G. Kondratiev, Functional Integrals and Quantum Lattice Systems: II. Periodic Gibbs States, Rep. Nat. Acad. Sci of Ukraine, No 8 (1991), 31–34.

    MathSciNet  Google Scholar 

  7. V.S. Barbulyak, Yu.G. Kondratiev, A Criterion for the Existence of Periodic Gibbs States of Quantum Lattice Systems, Selecta Math, formerly Sov., 12 (1993), 25–35.

    MathSciNet  Google Scholar 

  8. O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, I, II, Springer, New York, 1981.

    MATH  Google Scholar 

  9. R.L. Dobrushin, Prescribing a System of Random Variables by Conditional Distributions, Theory Prob. Appl., 15 (1970), 458–486.

    Article  MATH  Google Scholar 

  10. H.O. Georgii, Gibbs Measures and Phase Transitions. Vol 9, Walter de Gruyter, Springer, Berlin New York, 1988.

    Book  MATH  Google Scholar 

  11. S.A. Globa, Yu.G. Kondratiev, The Construction of Gibbs States of Quantum Lattice Systems, Selecta Math. Sov., 9 (1990), 297–307 (1990).

    MATH  Google Scholar 

  12. R. Høegh-Krohn, Relativistic Quanum Statistical Mechanics in Two-dimensional Space-time, Comm. Math. Phys., 38 (1974), 195–224.

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Klein, L. Landau, Stochastic Processes Associated with KMS States, J. Funct. Anal., 42 (1981), 368–428.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. Kozitsky, Quantum Effects in a Lattice Model of inharmonic Vector Oscillators, Letters Math. Phys., 51 (2000), 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Simon, Functional Integration and Quantum Physics, Academic Press, New York San Francisco London, 1979.

    MATH  Google Scholar 

  16. S. Stamenković, Unified Model Description of Order-Disorder and Displacive Structural Phase Transitions, Condensed Matter Physics, 1(14) (1998), 257–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kozitsky, Y. (2001). Gibbs States of a Lattice System of Quantum Anharmonic Oscillators. In: Duplij, S., Wess, J. (eds) Noncommutative Structures in Mathematics and Physics. NATO Science Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0836-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0836-5_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6999-8

  • Online ISBN: 978-94-010-0836-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics