Skip to main content

Nonstandard Quantization of the Enveloping Algebra U(so(n)) and its Applications

  • Chapter
Noncommutative Structures in Mathematics and Physics

Part of the book series: NATO Science Series ((NAII,volume 22))

  • 334 Accesses

Abstract

Quantum orthogonal groups, quantum Lorentz groups and their corresponding quantum algebras are of special interest for modern mathematical physics (see, for example, [1] and [2]). M. Jimbo [3] and V. Drinfeld [4] defined g-deformations (quantum algebras) Uq(g) for all simple complex Lie algebras g by means of Cartan subalgebras and root subspaces (see also [5] and [6]). Reshetikhin, Takhtajan and Faddeev [7] defined quantum algebras Uq(g) in terms of the quantum R- matrix satisfying the quantum Yang-Baxter equation. However, these approaches do not give a satisfactory presentation of the quantum algebra Uq(so(n, (C)) from a viewpoint of some problems in quantum physics and representation theory. When considering representations of the quantum groups SOq(n + 1) and SOq(n, 1) we are interested in reducing them onto the quantum subgroup SOq(n). This reduction would give an analogue of the Gel’fand-Tsetlin basis for these representations. However, definitions of quantum algebras mentioned above do not allow the inclusions Uq(so(n + 1,C)) D Uq(so(n,C)) and Uq(sonii) D Uq(son). To be able to exploit such reductions we have to consider g-deformations of the Lie algebra so(n +1, C) defined in terms of the generators Ik,k-i = Ek^k-i — Ek-i,k (where Eis is the matrix with elements (Eis)rt = δirδst) rather than by means of Cartan subalgebras and root elements. To construct such deformations we have to deform trilinear relations for elements Ik,k-1 instead of Serre’s relations (used in the case of Jimbo’s quantum algebras). As a result, we obtain the associative algebra which will be denoted as Uq(so(n, (ℂ)). This g-deformation was first constructed in [8]. It permits one to construct the reductions of U’q(so(n + 1, ℂ) onto U’q(so(n,ℂ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Gielerak, J. Lukierski, and Z. Popowicz (ed.), Quantum Groups and Related Topics, Kluwer, Dordrecht, 1992.

    MATH  Google Scholar 

  2. W. B. Schmidke, J. Wess, and B. Zumino, A q-deformed Lorentz algebra, Z. Phys. C52 (1991), 471–476.

    MathSciNet  ADS  Google Scholar 

  3. M. Jimbo, A q-analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985), 354–258.

    Google Scholar 

  5. J. C. Jantzen, Lectures on Quantum Groups, Aner. Math. Soc., Providence, RI, 1996.

    MATH  Google Scholar 

  6. A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997.

    Book  MATH  Google Scholar 

  7. N. Ya. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193–225.

    MathSciNet  MATH  Google Scholar 

  8. A. M. Gavrilik and A. U. Klimyk, q-Deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys. 21 (1991), 215–220.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on quantum homogeneous spaces, Adv. Math. 123 (1996), 16–77.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Havlíček, A. U. Klimyk, and S. Pošta, Representations of the cyclically symmetric q-deformed algebra soq(3), J. Math. Phys. 40 (1999), 2135–2161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. M. Gavrilik and N. Z. Iorgov, q-Deformed algebras Uq(son) and their representations, Methods of Funct. Anal. Topology 3, No. 4 (1997), 51–63.

    MathSciNet  MATH  Google Scholar 

  12. N. Z. Iorgov and A. U. Klimyk, Nonclassical type representations of the q-deformed algebra U q(son), Czech. J. Phys. 50(2000), 85–90.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. M. Gavrilik and N. Z. Iorgov, Higher Casimir operators of the nonstandard q-deformed algebras U q(son) and their eigenvalues in representations, Heavy Ion Physics 11, No. 1-2 (2000), 33–38.

    Google Scholar 

  14. M. Havlicek, A. U. Klimyk, and S. Posta, Central elements of the algebra Uq(son) and U q(ison), Czech. J. Phys. 50 (2000), 79–84.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. U. Klimyk, Nonstandard q-deformation of the universal enveloping algebra U q(son), in Proc. Int. Conf. “Quantum Theory and Symmetry” (H.-D. Doebner et al, eds.), World Scientific, Singapore, 459–463.

    Google Scholar 

  16. M. Noumi, T. Umeda, and M. Wakayama, Dual pairs, spherical harmonics and a Capelli identity in quantum group theory, Compos. Math. 104 (1996), 227–277.

    MathSciNet  MATH  Google Scholar 

  17. A. M. Gavrilik and N. Z. Iorgov, Representations of the nonstandard algebras U q(son) and U q(son,1) in Gel’fand-Tsetlin basis, Ukr. J. Phys. 43 (1998), 791–

    MathSciNet  Google Scholar 

  18. N. Z. Iorgov and A. U. Klimyk, The nonstandard deformation U q(son)for q a root of unity, Methods Funct. Anal. Topol. 6, No. 3 (2000), 15–29.

    MathSciNet  Google Scholar 

  19. M. Havlicek and S. PoSta, On the classification of irreducible finite-dimensional representations of U q(so3) algebra, J. Math. Phys., submitted for publication.

    Google Scholar 

  20. D. Arnaudon and A. Chakrabarti, Periodic and partially periodic representations of SU(n) q, Commun. Math. Phys. 139 (1991), 461–478.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. U. Klimyk and I.I. Kachurik, The embedding Uq(so3) C Uq(sl3), J. Phys. A: Math. Gen., submitted for publication.

    Google Scholar 

  22. A. U. Klimyk and I. I. Kachurik, Spectra, eigenvectors and overlap functions for representation operators of q-deformed algebras, Commun. Math. Phys. 175 (1996), 89–111.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. Nelson and T. Regge, 2+1 gravity for genus s1, Commun. Math. Phys. 141 (1991), 211–223.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. M. Gavrilik, The use of quantum algebras in quantum gravity, Proc. Inst. Math. NAS Ukraine 30 (2000), 304–309.

    MathSciNet  Google Scholar 

  25. L. Chekhov and V. Fock, 2+1 Geometry and quantum Teichmüller spaces, Czech. J. Phys., to be published.

    Google Scholar 

  26. N. Z Iorgov and A. U. Klimyk, The q-Laplace operator and q-harmonic polynomials on the quantum vector space, J. Math. Phys., submitted for publication.

    Google Scholar 

  27. D. Bullock and J. H. Przytycki, Multiplicative structure of Kauffman bracket skein module quantization, e-print: math.QA/9902117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klimyk, A.U. (2001). Nonstandard Quantization of the Enveloping Algebra U(so(n)) and its Applications. In: Duplij, S., Wess, J. (eds) Noncommutative Structures in Mathematics and Physics. NATO Science Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0836-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0836-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6999-8

  • Online ISBN: 978-94-010-0836-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics