Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 22))

Abstract

The Kerr rotating black hole solution displays some remarkable features indicating a relation to the structure of the spinning elementary particles. In particular, in the 1969 Carter [1] observed, that if three parameters of the Kerr-Newman metric are adopted to be (ħ=c=1) e 2 ≈ 1/137, m ≈ 10−22, ma= 1/2, then one obtains a model for the four parameters of the electron: charge, mass, spin and magnetic moment, and the gyromagnetic ratio is automatically the same as that of the Dirac electron. Investigations along this line [26] allowed to find out stringy structures in the real and complex Kerr geometry and to put forward a conjecture on the baglike structure of the source of the Kerr-Newman solution. The earlier investigations [2, 13, 5] showed that this source represents a rigid rotator (a relativistic disk) built of an exotic matter with superconducting properties. Since 1992 black holes have paid attention of string theory. In 1992 the Kerr solution was generalized by Sen to low energy string theory [7], and it was shown [17] that near the Kerr singular ring the Kerr-Sen solution acquires a metric similar to the field around a heterotic string. The point of view has appeared that black holes can be treated as elementary particles [8], On the other hand, a description of a spinning particle based only on the bosonic fields cannot be complete, and involving fermionic degrees of freedom is required. Therefore, the spinning particle must be based on a super-Kerr-Newman black hole solution [18] representing a natural combination of the Kerr spinning particle and superparticle model. Angular momentum L of spinning particles is very high |a|= L/mm, and the horizons of the Kerr metric disappear. There appears a naked ring-like singularity which has to be regularized being replaced by a smooth matter source. In this review we consider a source representing a rotating superconducting bag with a smooth domain wall boundary described by a supersymmetric version of

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174(1968) 1559.

    Article  ADS  MATH  Google Scholar 

  2. W. Israel, Source of Kerr metric, Phys. Rev. D2 (1970) 641.

    MathSciNet  ADS  Google Scholar 

  3. A. Burinskii, Microgeons with spin, Sov. Phys. JETP 39(1974) 193.

    MathSciNet  ADS  Google Scholar 

  4. D. Ivanenko and A. Burinskii, Gravitational strings in the models of spinning elementary particles, Izv. VUZ Fiz. 5(1975)135.

    Google Scholar 

  5. C. A. López, Extended model of the electron in general relativity, Phys. Rev. D30 (1984) 313.

    ADS  Google Scholar 

  6. A. Burinskii, Supersymmetric superconducting bag as a core of Kerr spinning particle, e-print hep-th/0008129.

    Google Scholar 

  7. A. Sen, Rotating charged black hole solution in heterotic string theory, Phys.Rev.Lett., 69(1992)1006–1009.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Sen, Extremal black holes and elementary string states, Modern Phys. Lett. A 10(1995)2081. C. Holzhey and F. Wilczek, Black holes as elementary particles, Nucl. Phys. B380(1992)447, hep-th/9202014

    Article  ADS  Google Scholar 

  9. A. Burinskii, String—like structures in complex Kerr geometry, in Relativity Today, (R.P. Kerr and Z. Perjes eds,), Academiai Kiado, Budapest 1994, pp. 149–158, gr-qc/93 03 003. —, Complex string as source of Kerr geometry, in Espec. Space Explorations, 9 (C2X1995) 60, Moscow, Belka, hep-th/9503094.

    Google Scholar 

  10. G.C. Debney, R.P. Kerr, A. Schild, Solutions of the Einstein and Einstein-Maxwell equations., J.Math.Phys. 10(1969)1842.

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Burinskii, R.P. Kerr and Z. Perjes, Nonstationary Kerr Congruences, e-print gr-qc/9501012.

    Google Scholar 

  12. A. Burinskii, The Kerr geometry, complex world lines and hyperbolic strings, Phys.Lett. A 185(1994)441.

    MathSciNet  ADS  Google Scholar 

  13. V. Hamity, Interior of Kerr metric, Phys. Let. A56(1976)77.

    Article  ADS  Google Scholar 

  14. C.A. López, Material and electromagnetic sources of the Kerr-Newman geometry, Nuovo Cimento B 76(1983)9

    ADS  Google Scholar 

  15. A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambrige University Press, 1994)

    Google Scholar 

  16. E. Witten, Superconducting strings, Nucl.Phys., B249(1985)557.

    Article  ADS  Google Scholar 

  17. A. Burinskii, Some properties of the Kerr solution to low energy string theory, Phys.Rev. D 52(1995)5826, hep-th/9504139.

    MathSciNet  ADS  Google Scholar 

  18. A. Burinskii, Kerr spinning particle, strings and superparticle models, Phys.Rev. D 57 (1998)2392, hep-th/9704102.—, Super-Kerr-Newman solution to broken N=2 supergravity, Class. Quantum Grav. 16(1999)3497, hep-th/9903032; —, Non-trivial supergeneralization of the Kerr-Newman solution, Ann.Phys.(Leipzig), 9 (2000) Spec.Issue 34, hep-th/9910045.

    MathSciNet  ADS  Google Scholar 

  19. S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett. 38(1977) 1433.

    Article  ADS  Google Scholar 

  20. D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16(1972)367.

    Google Scholar 

  21. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton, New Jersey 1983.

    Google Scholar 

  22. I. Dymnikova, Vacuum nonsingular black hole, Gen.Rel.Grav. 24(1992)235; E.Elizalde and S.R. Hildebrandt, Regular quantum interiors for black holes, gr-qc/0007030

    Article  MathSciNet  ADS  Google Scholar 

  23. J.R. Morris, Supersymmetry and gauge invariance constraints in a U(I) x U(I)’-Higgs superconducting cosmic string model, Phys.Rev.D 53(1996)2078, hep-ph/9511293.

    ADS  Google Scholar 

  24. C.A. López, Internal structure of a classical spinning electron, Gen.Rel.Grav. 24 (1992)2851.

    Article  Google Scholar 

  25. C.A. López, Dynamics of charged bubbles in general relativity and models of particles Phys.Rev. D 38(1988) 3662.

    ADS  Google Scholar 

  26. M. Gürses and F. Gürsey, Lorentz covariant treatment of the Kerr-Schild geometry, Journ. Math.Phys. 16(1975)2385.

    Article  ADS  Google Scholar 

  27. A. L. Macpherson and B.A. Campbell, Biased discrete supersymmetry breaking and Fermi balls, Phys.Let.B(1995)205.

    ADS  Google Scholar 

  28. J.R. Morris and D. Bazeia, Supersymmetry breaking and Fermi balls, Phys.Rev. D 54(1996)5217.

    ADS  Google Scholar 

  29. J.R. Morris, Cosmic strings in supergravity, Phys.Rev. D 56(1997)2378. hep-ph/9706302

    ADS  Google Scholar 

  30. M. Cvetic and H. Soleng, Supergravity domain walls, Phys.Rept. 282(1997)159, hep-th/9604090

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Cvetic, S. Griffies and S.J. Rey, Static domain walls in N=l supergravity, Nucl.Phys. B 381(1992)301–328, hep-th/9206004.

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Ipser and P. Sikivie, Gravitationally repulsive domain walls, Phys.Rev. D 30(1983) 712–719.

    MathSciNet  ADS  Google Scholar 

  33. G.W. Gibbons and CM. Hull, A Bogomolny bound for general relativity and solitons in N=2 supergravity, Phys. Lett. B 109(1982)190.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burinskii, A. (2001). Rotating Super Black Hole as Spinning Particle. In: Duplij, S., Wess, J. (eds) Noncommutative Structures in Mathematics and Physics. NATO Science Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0836-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0836-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6999-8

  • Online ISBN: 978-94-010-0836-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics