Skip to main content

Computing Hodge-theoretic invariants of singularities

  • Chapter
New Developments in Singularity Theory

Part of the book series: NATO Science Series ((NAII,volume 21))

Abstract

Let Y = V(F) ⊂ ℙn+1 be a smooth hypersurface of degree d. By the exact sequence

$$0 \to H^{n + 1} \left( {\mathbb{P}^{n + 1} \backslash Y,\mathbb{C}} \right) \to H^n \left( {Y,\mathbb{C}} \right), \to H^{n + 2} \left( {\mathbb{P}^{n + 1} ,\mathbb{C}} \right) \to 0,$$

the primitive cohomology of Y in degree n is identified with the cohomology of its complement in projective space. On the other hand this group can be described, by Grothendieck’s algebraic de Rham theorem [5], as the space of rational differential n + 1-forms on ℙn+1 with poles only along Y modulo exact forms. According to Griffiths [4], this space is filtered by the order of pole of representatives along X and the resulting filtration on H n(Y, ) is its Hodge filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Briançon and P. Maisonobe, Idéaux de germes d’opérateurs différentiels à une variable, l’Enseignement Math. 30 (1984) 7–38.

    MATH  Google Scholar 

  2. E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscr. math. 2 (1970) 103–161.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Dimca, Monodromy and Hodge theory of regular functions, this volume

    Google Scholar 

  4. P.A. Griffiths, On the periods of certain rational integrals I,II, Ann. of Math. 90 (1969) 460–541.

    Article  MATH  Google Scholar 

  5. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. IHES. 29 (1966) 95–103.

    MathSciNet  Google Scholar 

  6. C. Hertling, Frobenius manifolds and variance of the spectral numbers, this volume

    Google Scholar 

  7. F. Pham, Caustiques, phase stationnaire et microfonctions, Acta Math. Vietn. 2 (1977) 35–101.

    MathSciNet  MATH  Google Scholar 

  8. F. Pham, Singularités des systèmes de Gauss-Manin, Progress in Math. 2, Birkhäuser, 1979.

    Google Scholar 

  9. M. Saito, On the exponents and the geometric genus of an isolated hypersurface singularity, Singularities (ed Peter Orlik), Proc. Symp. Pure Math. 40:2, (Amer. Math. Soc, 1983) pp 465–472.

    Google Scholar 

  10. M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1989) 849–995.

    Article  Google Scholar 

  11. M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990) 221–333.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Sebastiani, Preuve d’une conjecture de Brieskorn, Manuscr. math. 2 (1970) 301–308.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Scherk and J.H.M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985) 641–665.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973) 211–320.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Schulze, Computation of the monodromy of an isolated hypersurface singularity, Diplomarbeit, Universität Kaiserslautern, 1999. http://www.mathematik.uni-kl.de/mschulze

  16. M. Schulze, Algorithms to compute the singularity spectrum, Master Class thesis, University of Utrecht, 2000. http://www.mathematik.uni-kl.de/mscmilze

  17. J.H.M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities, Oslo 1976 (ed. Per Holm), (Sijthoff and Noordhoff, Alphen aan den Rijn, 1977) pp 525–563.

    Google Scholar 

  18. D. van Straten and J.H.M. Steenbrink, Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Sem. Univ. Hamburg 55 (1985) 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Varchenko, The asymptotics of holomorphic forms determine a mixed Hodge structure, Sov. Math. Dokl. 22 (1980) 248–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schulze, M., Steenbrink, J. (2001). Computing Hodge-theoretic invariants of singularities. In: Siersma, D., Wall, C.T.C., Zakalyukin, V. (eds) New Developments in Singularity Theory. NATO Science Series, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0834-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0834-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6997-4

  • Online ISBN: 978-94-010-0834-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics