Simple Singularities and Complex Reflections

  • Peter Slodowy
Chapter
Part of the NATO Science Series book series (NAII, volume 21)

Abstract

The Weyl groups of type A k , D k , E k play an important role in the study of the corresponding simple singularities, e.g. they are realised as the full monodromy groups of these singularities (in dimension 2), and the base of the semiuniversal deformation of such a singularity is naturally identified with the complex orbit space of the Weyl group, cf. [1, 3], [5], [34, 35].

Keywords

Manifold Hunt Agram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups A k, D k, E k, and Lagrangian singularities, Funct. Anal. Appl. 27 (1972) 254–272.Google Scholar
  2. 2.
    V.I. Arnold, Critical points of functions on a manifold with boundary, the simple Lie groups B k, C k, and F 4, and singularities of evolutes, Russian Math. Surveys 33:5 (1978) 99–116.CrossRefGoogle Scholar
  3. 3.
    V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko, Singularities of differentiable maps Vol. I, Monographs in Math. 82, Birkhäuser, Basel, Boston, 1985.Google Scholar
  4. 4.
    N. Bourbaki, Groupes et algèbres de Lie, Chaps. IV, V, VI, Hermann, Paris, 1968.Google Scholar
  5. 5.
    E. Brieskom, Singular elements of semisimple algebraic groups, Actes Congr. Int. Math., Nice 1970, tome 2 pp 279–284.Google Scholar
  6. 6.
    M. Broué and G. Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993) 119–189.Google Scholar
  7. 7.
    M. Broué and J. Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy 1994), Progress in Math. 141, (Birkhäuser, Basel, 1997) pp 73–139.Google Scholar
  8. 8.
    R.W. Carter, Conjugacy classes in the Weyl groups, Compositio Math. 25 (1972) 1–59.MathSciNetMATHGoogle Scholar
  9. 9.
    C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955) 778–782.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. Denef and F. Loeser, Regular elements and monodromy of discriminants of finite reflection groups, Indagationes Math. N.S. 6 (1995) 129–143.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    V.V. Goryunov, Unitary reflection groups associated with singularities of functions with cyclic symmetry, Russ. Math. Surveys 54 (1999) 873–893.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    V.V. Goryunov, Unitary reflection groups and automorphism groups of simple hypersurface singularities, this volume.Google Scholar
  13. 13.
    V.V. Goryunov and C.E. Baines, Cyclically equivariant function singularities and unitary reflection groups G(2m, 2, n), G 9, G 31, St. Petersburg Math. J. 11:5 (2000) 761–774.MathSciNetMATHGoogle Scholar
  14. 14.
    H. Hauser and G. Müller, Algebraic singularities have maximal reductive automorphism groups, Nagoya Math. J. 113 (1989) 181–186.MathSciNetMATHGoogle Scholar
  15. 15.
    F. Huikeshoven, On the versai resolutions of deformations of rational double points, Invent. Math. 20 (1973) 15–33.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    G. Kempken, Eine Darstellung des Köchers à k, Bonner Math. Schriften137 (198Google Scholar
  17. 17.
    B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971) 753–809.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    G. Lehrer, Poincaré series for unitary reflection groups, Invent. Math. 120 (1995) 411–425.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    G. Lehrer and T.A. Springer, Intersection multiplicities and reflection subquotients of unitary reflection groups I, Geometric group theory down under (Proceeedings of a special year in Geometric Group Theory, Canberra, Australia 1996), (eds Cossey et al.) (de Gruyter, Berlin, 1999) pp 181–194.Google Scholar
  20. 20.
    G. Lehrer and T.A. Springer, Reflection subquotients of unitary reflection groups, Canadian J. Math. 51 (1999) 1175–1193.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    E.J.N. Looijenga, A period map for certain semi-universal deformations, Compositio Math. 30 (1975) 299–316.MathSciNetMATHGoogle Scholar
  22. 22.
    E.J.N. Looijenga, Isolated singular points on complete intersections, London Math. Soc. Lecture Notes 77, Cambridge Univ. Press, 1984.Google Scholar
  23. 23.
    O.V. Lyashko, Classification of critical points of functions on a manifold with singular boundary, Funct. Anal. Appl. 17 (1983) 187–193.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies 61, Princeton University Press, 1974.Google Scholar
  25. 25.
    P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980) 77–94.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der math. Wiss. 300, Springer Verlag, Berlin, 1992.Google Scholar
  27. 27.
    H.C. Pinkham, Singularités de Klein I, II; Singularités rationelles de surfaces; Résolution simultanée de points double rationnels, Séminaire sur les singularités des surfaces (eds M. Demazure, H. Pinkham and B. Teissier), Springer Lecture Notes in Math 777 (1980), 1–20, 147-178, 179-203.Google Scholar
  28. 28.
    D.S. Rim, Equivariant G-structure on versai deformations, Trans. Amer. Math. Soc. 257 (1980) 217–226.MathSciNetMATHGoogle Scholar
  29. 29.
    K. Saito, Period mapping associated to a primitive form, Publ. Math. RIMS 19 (1983) 1231–1260.MATHCrossRefGoogle Scholar
  30. 30.
    O.P. Shcherbak, Wave fronts and reflection groups, Russian Math. Surveys 43:3 (1988) 125–160.MathSciNetGoogle Scholar
  31. 31.
    G.C. Shephard, and J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274–304.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    D. Siersma, Singularities of functions on boundaries, corners, etc., Quart. J. Math. 32 (1981) 119–127.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    P. Slodowy, Einige Bemerkungen zur Entfaltung symmetrischer Funktionen, Math. Zeits. 158 (1978) 157–170.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    P. Slodowy, Simple singularities and simple algebraic groups, Springer Lecture Notes in Math. 815 (1980).Google Scholar
  35. 35.
    P. Slodowy, Four lectures on simple groups and singularities, Communications of the Math. Institute 11 (1980), Rijksuniversiteit Utrecht.Google Scholar
  36. 36.
    P. Slodowy, Singularitäten, Kac-Moody Liealgebren, assoziierte Gruppen und Verallgemeinerungen, Habilitationsschrift, Universität Bonn, 1984.Google Scholar
  37. 37.
    T.A. Springer, Regular elements of finite reflection groups, Invent, math. 25 (1975) 159–198.MathSciNetCrossRefGoogle Scholar
  38. 38.
    A.N. Varchenko and S.V. Chmutov, Finite irreducible groups generated by reflections are monodromy groups of appropriate singularities, Funct. Anal. Appl. 18 (1984) 171–183.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    E.B. Vinberg, On the linear groups associated to periodic automorphisms of semisimple algebraic groups, Soviet Math. Dokl. 16:2 (1975) 406–409.MATHGoogle Scholar
  40. 40.
    E.B. Vinberg, On the classification of the nilpotent elements of graded Lie algebras, Soviet Math. Doklady 16:6 (1975) 1517–1520.MATHGoogle Scholar
  41. 41.
    E.B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR — Izvestija 10 (1976) 463–495.CrossRefGoogle Scholar
  42. 42.
    E. Voigt, Ausgezeichnete Basen von Milnorgittern einfacher Singularitäten, Bonner Math. Schriften 160 (1985).Google Scholar
  43. 43.
    J. Wahl, Derivations, automorphisms, and deformations of quasihomogeneous singularities, Singularities (ed Peter Orlik), Proc. Symp. Pure Math. 40:2, (Amer. Math. Soc, 1983) pp 613–624.Google Scholar
  44. 44.
    C.T.C. Wall, A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980) 169–175.MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    C.T.C. Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980) 347–354.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    T. Yano, Free deformations of isolated singularities, Sci. Rep. Saitama Univ. Ser. A 9 (1980) 61–70.MathSciNetGoogle Scholar
  47. 47.
    T. Yano, Invariants of finite reflection groups and flat coordinate systems of isolated singularities, (in Japanese), RIMS Kokyuroku 444 (1981) 209–235.Google Scholar
  48. 48.
    T. Yano, Deformations of rational double points associated with unitary reflection groups, Sci. Rep. Saitama Univ. Ser. A 10 (1981) 7–9.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Peter Slodowy
    • 1
  1. 1.Mathematisches Seminar der Universität HamburgGermany

Personalised recommendations