Classifications in Singularity Theory and Their Applications

  • James William Bruce
Chapter
Part of the NATO Science Series book series (NAII, volume 21)

Abstract

Classifying objects in mathematics is a fundamental activity. Each branch has its own natural notion of equivalence and it is equally natural to list the objects in question up to that equivalence. So, for example, we have the notions of isomorphism for vector spaces or for groups, diffeomorphism for manifolds, conjugacy for dynamical systems.

Keywords

Filtration Manifold Topo TeRt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Singularities of smooth mappings, Uspekhi Mat. Nauk. 23:1 (1968) 3–44; Russian Math. Surveys 23:1 (1968) 1-43.Google Scholar
  2. 2.
    V. I. Arnold, Normal forms for functions near a degenerate critical point, the Weyl groups A n, D n, E n, and Legendrian singularities, Funct. Anal. Appl. 6 (1972) 254–272.CrossRefGoogle Scholar
  3. 3.
    V. I. Arnold, Indices of 1-forms on a manifold, Uspekhi Mat. Nauk., 34:1 (1979) 3–38; Russian Math. Surveys 34 (1979), 1-42.MathSciNetGoogle Scholar
  4. 4.
    V. I. Arnold, Normal forms for functions in neighbourhoods of degenerate critical points, Russ. Math. Surveys 29 (1974) 11–49.Google Scholar
  5. 5.
    V. I. Arnold, Wave front evolution and equivariant Morse lemma, Commun. Pure and Appl. Math. 29 (1976) 557–582.CrossRefGoogle Scholar
  6. 6.
    V. I. Arnold, Catastrophe Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1984, 1986; third edition 1992.MATHGoogle Scholar
  7. 7.
    V. I. Arnold, S. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Volume I, Monographs in Math. 82, Birkhäuser, Boston-Basel, 1985.Google Scholar
  8. 8.
    Th. Brocker and L. C. Lander, Differentiable germs and catastrophes, London Math. Soc. Lecture Notes 17, Cambridge Univ. Press, 1975.Google Scholar
  9. 9.
    J.W. Bruce and T.J. Gaffney, Simple singularities of mappings (ℂ, 0) → (ℂ2,0), J. London Math. Soc.(2) 26 (1982) 465–474.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J.W. Bruce and P.J. Giblin, Curves and singularities, Cambridge Univ. Press, 1994.Google Scholar
  11. 11.
    J.W. Bruce and P.J. Giblin, Projections of surfaces with boundary, Proc. London. Math. Soc. (3) 60 (1990) 392–416.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    J.W. Bruce, N.P. Kirk and A.A. du Plessis, Complete transversals and the classification of singularities, Nonlinearity, 10:1 (1997) 253–275.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J.W. Bruce, N.P. Kirk and J.M. West, Classification of map-germs from surfaces to four-space, preprint, University of Liverpool, 1995.Google Scholar
  14. 14.
    J.W. Bruce, T.J. Gaffney and A.A. du Plessis, On left equivalence of mapgerms, Bull. London Math. Soc. 16 (1984) 301–306.Google Scholar
  15. 15.
    J.W. Bruce, A.A. du Plessis and C.T.C. Wall, Determinacy and unipotency, Invent. Math. 88 (1987) 521–554.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    J.N. Damon, The unfolding and determinacy theorems for subgroups of A and K, Memoirs Amer. Math. Soc. 50, no. 306, 1984.Google Scholar
  17. 17.
    A. Dimca and C.G. Gibson, Contact unimodular germs from the plane to the plane, Quart. J. Math. Oxford (2) 34 (1983) 281–295.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    A. Dimca and C.G. Gibson, Classification of equidimensional contact unimodular map-germs, Math. Scand. 56 (1985) 15–28.MathSciNetMATHGoogle Scholar
  19. 19.
    T.J. Gaffney, On the order of determination of a finitely determined germ, Invent. Math. 37 (1976) 83–92.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    T.J. Gaffney, A note on the order of determination of a finitely determined germ, Invent. Math. 52 (1979) 127–130.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    T.J. Gaffney, The structure of TA.f, classification, and an application to differential geometry, Singularities (ed Peter Orlik), Proc. Symp. pure math. 40, part 1, (Amer. Math. Soc, 1983) pp 409–428.Google Scholar
  22. 22.
    C.G. Gibson, Singular points of smooth mappings, Research Notes in Maths. 25, Pitman, London, 1973.Google Scholar
  23. 23.
    C.G. Gibson and C.A. Hobbs, Simple singularities of space curves, Math. Proc. Camb. Phil. Soc 113 (1993) 297–310.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Maths. 14, Springer Verlag, Berlin, 1973.Google Scholar
  25. 25.
    V.V. Goryunov, Geometry of bifurcation diagrams of simple projections onto the line, Funct. Anal. Appl. 15 (1981) 77–82.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    K. Houston and N.P. Kirk, On the classification and geometry of map-germs from 2-space to 4-space, Singularity Theory (eds Bill Bruce and David Mond), London Math. Soc. Lecture Notes 263, (Cambridge Univ. Press, 1999) pp 325–352.Google Scholar
  27. 27.
    W.L. Marar and F. Tari, On the geometry of simple germs of corank 1 maps from IR 3 to IR 3, Math. Proc. Camb. Phil. Soc. 119 (1996) 469–481.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    J. Martinet, Singularities of smooth functions and maps, London Math. Soc. Lecture Notes 58, Cambridge Univ. Press, 1982.Google Scholar
  29. 29.
    J.N. Mather, Stability of C∞-mappings III: Finitely determined map-germs, Publ. Math. IHES 35 (1969) 127–156.Google Scholar
  30. 30.
    D.M.Q. Mond, On the classification of germs of maps from IR 2 to IR 3, Proc. London Math. Soc. 50 (1985) 333–369.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    B. Morin, Formes canoniques des singularités d’une application différentiate, Comptes Rendus Acad. Sci. Paris 260 (1965) 5662–5665, 6503-6506.MathSciNetMATHGoogle Scholar
  32. 32.
    A.C. Nogueira, thesis, Sao Carlos, 1998.Google Scholar
  33. 33.
    A.A. du Plessis, On the determinacy of smooth map germs, Invent. Math. 58 (1980) 107–160.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    A.A. du Plessis and C.T.C. Wall, The geometry of topological stability, London Math. Soc. Monographs 9, Oxford Univ. Press, 1995.Google Scholar
  35. 35.
    D. Ratcliffe, Stems and series in A-classification, Proc. London Math. Soc. (1) 70 (1995) 181–213.MathSciNetGoogle Scholar
  36. 36.
    D. Ratcliffe, A classification of map-germs (ℂ2,0) → (ℂ3,0) up to A-equivalence, preprint, Univ. of Warwick, 1994.Google Scholar
  37. 37.
    J.H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc (2) 36 (1987) 351–369.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    D. Siersma, The singularities of C∞-functions of right codimension smaller than or equal to eight, Indag. Math. 35 (1973) 31–37.MathSciNetGoogle Scholar
  39. 39.
    C.T.C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981) 481–539.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    C.T.C. Wall, Notes on the classification of singularities, Proc. London Math. Soc. (3) 48 (1984) 461–513.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    H. Whitney, The singularities of smooth n-manifolds in (2n — 1)-space, Ann. of Math. 45 (1944) 247–293.MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    H. Whitney, On singularities of mappings of Euclidean spaces I, mappings of the plane to the plane, Ann. of Math. 62 (1955) 374–410.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    V.M. Zakalyukin, Flag contact singularities, Real and Complex Singularities (eds J.W. Bruce and F. Tari), Research Notes in Math. 412 (Chapman and Hall/CRC 2000) pp 134–146. See also article in this volume.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • James William Bruce
    • 1
  1. 1.Mathematical SciencesUniversity of LiverpoolUK

Personalised recommendations