Skip to main content

Atmospheric Chemistry Experiment (ACE): An Overview

  • Chapter
Spectroscopy from Space

Part of the book series: NATO Science Series ((NAII,volume 20))

Abstract

ACE is a Canadian satellite mission that will measure and help to understand the chemical and dynamical processes that control the distribution of ozone in the stratosphere. The ACE instruments are a Fourier transform infrared spectrometer, a UV/visible/near IR spectrograph and a two channel solar imager, all working in solar occultation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.I. Wardle, J.B. Kerr, C.T. McElroy, and D.R. Francis, eds., (1997) Ozone Science: A Canadian Perspective on the Changing Ozone Layer, Environment Canada.

    Google Scholar 

  2. Newman, P.A. et al., (1997) Anomalously low ozone over the Arctic, Geophys. Res. Lett., 24, 2689–2692.

    Article  Google Scholar 

  3. Müller, R., Crutzen, P.J., Grooss, J.-U., Brühl, C., Russell III, J.M., Gernandt, H., McKenna, D.S. and Tuck, A., (1997) Severe chemical ozone loss in the Arctic during the winter of 1995-96, Nature, 389, 709–712.

    Article  Google Scholar 

  4. Knudsen, B.M. et al., (1998) Ozone depletion in and below the Arctic vortex for 1997, Geophys. Res. Lett., 25, 627–630.

    Article  Google Scholar 

  5. Lefevre, F., Figarol, F., Carslaw, K.S. and Peter, T., (1998) The 1997 Arctic ozone depletion quantified from three-dimensional model simulations, Geophys. Res. Lett., 25, 2425–2429.

    Article  Google Scholar 

  6. Farman, J. C., Gardiner, B.G., and Shanklin, J.D., (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature 315, 207–210.

    Article  Google Scholar 

  7. Brasseur, G.P., (1992) Planet Space Sci., 40, 403.

    Article  Google Scholar 

  8. Hofmann, D. J. and S. Solomon, (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J. Geophys. Res., 94, 5029–5041.

    Article  Google Scholar 

  9. Martin, S.T., Salcedo, D., Molina, L.T., and Molina, M.J., (1998) Deliquescence of sulfuric acid tetrahydrate following volcanic eruptions or denitrification, Geophys. Res. Lett. 25, 31–34.

    Article  Google Scholar 

  10. Koop, T., and Carslaw, K.S., (1996) Melting of H2SO4-4H2O particles upon cooling: Implications for polar stratospheric clouds. Geophys. Res. Lett., 25, 3747–3750.

    Google Scholar 

  11. Tolbert, M.A., (1996) Polar clouds and sulfate aerosols, Science, 272, 1597.

    Article  Google Scholar 

  12. Molina, L.T. and Molina, M.J., (1987) Production of C12O2 from the self reaction of the CIO radical, J. Phys. Chem., 91, 433.

    Article  Google Scholar 

  13. Clyne, M.A.A., and Watson, R.T., (1977) Kinetic studies of diatomic free radicals using mass spectrometry, J. Chem. Phys., 73, 1169–1187.

    Google Scholar 

  14. Yung, Y.L., Pinto, J.P., Watson, R.T., and Sander, S.P., (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere, J. Atmos. Sci., 37, 339–353.

    Article  Google Scholar 

  15. Edouard, S.B., Legras, B., Lefevre, F. and Eymard, R., (1996) The effect of small scale inhomogeneities on ozone depletion in the Arctic, Nature, 384, 444–447.

    Article  Google Scholar 

  16. Carslaw, K.S. et al., (1998) Increased stratospheric ozone depletion due to mountain-induced atmospheric waves, Nature, 391, 675–678.

    Article  Google Scholar 

  17. Santer, B.D. et al., (1996) A search for human influences on the thermal structure of the atmosphere, Nature, 382, 39–46.

    Article  Google Scholar 

  18. Austin, J., et al., (1992) Possibility of an Arctic ozone hole in a doubled-CO2 climate, Nature, 360, 221–225.

    Article  Google Scholar 

  19. Shindell, D.T., Rind, D. and Lonergan, P., (1998) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increased greenhouse-gas concentrations, Nature, 392, 589.

    Article  Google Scholar 

  20. Moreau, L., M.-A. Soucy, S. Fortin and J. Giroux, (Feb. 2001) in Technical Digest, Fourier Transform Spectroscopy: New Methods and Applications, Optical Society of America, Washington, D.C.

    Google Scholar 

  21. Mauldin, L.E., N.H. Zaun, M.P. McCormick, J.H. Guy and W.R. Vaughn, (1985) SAGE II Instrument: A Functional Description, Opt. Eng., 24, 307.

    Google Scholar 

  22. Burrows, J.P. et al., (1999) The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results, J. Atmos. Sci. 56, 151–175.

    Article  Google Scholar 

  23. Gunson, M.R. et al., (1996) The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS Space Shuttle missions, Geophys. Res. Lett. 23, 2333–2336.

    Article  Google Scholar 

  24. Kent, G.S. et al., (1993) A model for the separation of cloud and aerosol in SAGE II occultation data, J. Geophys. Res., 98, 20, 725–720, 735.

    Google Scholar 

  25. Abrams, M.C. et al., (19%) Remote sensing of the earth’s atmosphere from space with high-resolution Fourier transform spectroscopy: Development of a methodology of data processing for the Atmospheric Trace Molecule Spectroscopy Experiment, Appl. Opt., 35, 2774–2786.

    Google Scholar 

  26. Carlotti, M., (1998) Global-fit approach to the analysis of limb-scanning atmospheric measurements, Appl. Opt. 27, 3250–3254.

    Article  Google Scholar 

  27. McElroy, C.T., (1995) A spectroradiometer for the measurement of direct and scattered solar irradiance from on-board the NASA ER-2 higfr-altitude research aircraft, Geophys. Res. Lett. 22, 1361–1364.

    Article  Google Scholar 

  28. Brown, L.R. et al., (1996) The 1995 ATMOS linelist, Appl. Opt., 35, 2828–2848.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bernath, P. (2001). Atmospheric Chemistry Experiment (ACE): An Overview. In: Demaison, J., Sarka, K., Cohen, E.A. (eds) Spectroscopy from Space. NATO Science Series, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0832-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0832-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6993-6

  • Online ISBN: 978-94-010-0832-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics