Review on the Existing Spectroscopic Databases for Atmospheric Applications

  • Agnès Perrin
Part of the NATO Science Series book series (NAII, volume 20)


The ever increasing need for improvements in the accuracy of remote sensing measurements, in particular for the Earth’s atmosphere, has led to numerous recent efforts to obtain improved spectroscopic parameters for the molecules of atmospheric or planetological interest. These efforts have led to the generation of numerous molecular spectroscopic databases [1, 2, 3, 4, 5]. As input, the radiative transfert codes require in addition to an atmospheric profile, a spectroscopic dataset which contains for an increasing number of molecules either line by line parameters (line positions, intensities and line shape data) for discrete molecular transitions or cross -sections data when a line by line description is not available or not possible. The parameters from these databases together with the absorber amount and atmospheric pressure and temperature allow the absorption/emission due to discrete molecular transitions or to quasi continua to be computed at any frequency assuming a reliable line shape function.


Line Position Line Parameter Total Ozone Mapping Spectrometer Pinatubo Eruption Infrared Atmospheric Sounding Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, L.R., Farmer, C.B., Rinsland, C.P. and Toth, R.A. (1987) Molecular line parameters for the atmospheric molecule trace spectroscopy experiment, Appl. Opt. 26, 5154–5182.Google Scholar
  2. 2.
    Chance, K., Jucks, K.W., Johnson, D.G., and Traub, W.A. (1994) The Smithsonian astrophyical Observatory Database SAO92, J. Quant. Spectrosc. Radiat. Transf. 52, 447–457.CrossRefGoogle Scholar
  3. 3.
    Rothman, L.S., Rinsland, C.-P., Rinsland, C.-P., S.T. Massie, D.P. Edwards, Flaud, J.-M., Perrin, A., Camy-Peyret, C., Dana, V., Mandin, J.-Y., Schroeder, J., McCann, A., Gamache, R.R., Wattson, R.B., Yoshino, K., Chance, K.V., Jucks, K.W., Brown, L.R., Nemtchinov, V., and Varanasi, P. (1998) The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) 1996 edition, J. Quant. Spectrosc. Radiat. Transf. 60, 665–710.CrossRefGoogle Scholar
  4. 4.
    Pickett, H.M., R.I.Poynter, R.L., Cohen, E.A., Delitsky, M.L., Pearson, J.C., Muller, H.S.P. (1998) Submillimeter, millimeter and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transf. 60, 883–890.CrossRefGoogle Scholar
  5. 5.
    Jacquinet-Husson, N., Arié, E., Ballard, J., Barbe, A., Bjoraker, G., Bonnet, B., Brown, L.R., Camy-Peyret, C., Champion, J.P., Chédin, A., Chursin, A., Clerbaux, C., Duxbury, G., Flaud, J.-M., Fourrié, N., Fayt, A., Graner, G., Gamache, R., Goldman, A., Golovko, VL., Guelachvili, G., Hartmann, J.-M., Hilico, J.C., Hillman, J., Lefèvre, J.G., Lellouch, E., Mikhaïlenko, S.N., Naumenko, O.V., Nemtchinov, V.D., Newnham, A., Nikitin, A., Orphal, J., Perrin, A., Reuter, D.C., Rinsland, C.-P., Rosenmann, L., Rothman, L.S., Scott, N.A., Selby, J., Sinitsa, L.N., Sirota, J.M., Smith, M.A., Smith, K.M., Tyuterev, Vl.G., Tipping, R.H., Urban, S., Varanasi, P., Weber, M. (1999) The 1997 GEISA databank, J. Quant. Spectrosc. Radiat. Transf. 62, 205–254.CrossRefGoogle Scholar
  6. 6.
    Carlson, R., Smythe, W., Baines, K., Barbinis, E., Becker, K, Burns, R., Calcutt, S., Calvin, W., Clark, R., Danielson, G., Davies, A., Drossart, P., Encrenaz, T., Fanale, F., Granahan, I.J., Hansen, G., Herrera, P., Hibbitts, C., Hui, J., Irwin, P., Johnson, T., Kamp, L., Kieffer, H., Leader, F., Lellouch, E., Lopes, Gautier, R., Matson, D., McCord, T., Mehlman, T.R., Ocampo, A., Orton, G., Roos, Serote, M., Segura, M., Shirley, J., Soderblom, L., Stevenson, A., Taylor, F., Torson, J., Weir, A., Weissman, P. (1996) Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: results from Galileo’s initial orbit, Science 274, 385–388.CrossRefGoogle Scholar
  7. 7.
    Ma, Q. and Tipping, R.H. (1999) The averaged density matrix in the coordinate representation: Application to the calculation of the far wing lineshapes for H2O, J. Chem. Phys. 111, 5909–5921.CrossRefGoogle Scholar
  8. 8.
    Pine, A.S., Looney, J.P. (1987) N2 and air broadening in the fundamental bands of HF and HC1, J. Mol. Spectrosc. 122, 41–55.CrossRefGoogle Scholar
  9. 9.
    Pieroni, D., Hartmann, J.-M., Camy-Peyret, C., Jeseck, P., and Payan, S. (2000) Influence of line mixing on absorption by CH4 in atmospheric balloon borne spectra near 3.3 μm, J. Quant. Spectrosc. and Rad. Transf. 68, 117–133.CrossRefGoogle Scholar
  10. 10.
    Partridge, H., Schwenke, D.W. (1997) The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data, J. Chem, Phys. 106, 4618–4639.CrossRefGoogle Scholar
  11. 11.
    Polyansky, O.L., Zobov, N.F., Viti, S., Tennyson, J., Bernath, P.F., Wallace, L. (1997) High, temperature rotational transitions of water in sunspot and laboratory spectra, J. Mol. Spectrosc. 186, 422–447.CrossRefGoogle Scholar
  12. 12.
    Wenger, Ch., Champion, J.P. (1998) Spherical Top Data System (STDS) software for the simulation of spherical top spectra, J. Quant. Spectrosc. Radiat. Transf. 59, 471–480.CrossRefGoogle Scholar
  13. 13.
    Rinsland, C.-P., Flaud, J.-M., Goldman, A., Perrin, A., Camy-Peyret, C., M.A. Smith, Malathy Devi, V., D. Ch. Benner, Barbe, A., Stephen, T.M., and Murcray, F.J. (1998) Spectroscopic parameters for ozone and its isotopes: current status, prospect for improvement, and the identification of 16O16O17O and of 16O17O16O lines in infrared ground-based and Stratospheric Solar absorption spectra, J. Quant. Spectrosc. Radiat. Transf. 60, 803–814.CrossRefGoogle Scholar
  14. 14.
    Perrin, A., Flaud, J.-M., Goldman, A., Camy-Peyret, C., Lafferty, W.J., Arcas, Ph., and Rinsland, C.-P. (1998) NO2 and SO2 line parameters: 1996 HITRAN update and new results, J. Quant. Spectrosc. Radiat. Transf. 60, 839–850.CrossRefGoogle Scholar
  15. 15.
    Goldman, A., Rinsland, C.-P., Perrin, A., and Flaud, J.-M. (1998) HNO3 line parameters; 1996 HITRAN update and new results J. Quant. Spectrosc. Radiat. Transf. 60, 851–861.CrossRefGoogle Scholar
  16. 16.
    Goldman, A., Rinsland, C.-P., Flaud, J.-M., and Orphal, J. (1998) ClONO2: spectroscopic line parameters and cross sections in 1996 HITRAN, J. Quant. Spectrosc. and Rad. Transf. 60, 875–882.CrossRefGoogle Scholar
  17. 17.
    Giver, L.P., Chackerian, Ch., Varanasi, P. (2000) Visible and near infrared H2 16O line intensity corrections for HITRAN-96, J. Quant. Spectrosc. Radiat. Transf. 66, 101–105.CrossRefGoogle Scholar
  18. 18.
    Flaud, J.-M., Camy-Peyret, C., and Toth, R.A. (1981) Water Vapour Line Parameters from Microwave to Medium Infrared, Pergamon press, Oxford.Google Scholar
  19. 19.
    Coudert, L.H. (1999) Line frequency and line intensity analyses of water vapor, Mol. Phys. 96, 941–954.CrossRefGoogle Scholar
  20. 20.
    Toth, R.A. (1998) water vapor measurements between 590 and 2582 cm-1: line positions and strenghts, J. Mol.Spectrosc. 190, 379–396.CrossRefGoogle Scholar
  21. 21.
    Flaud, J.-M., Camy-Peyret, C., Rinsland, C.-P., Smith, M.A.H., and Malathy Devi, V. (1990) Atlas of ozone spectral parameters from microwave to medium infrared, Academic Press, San Diego.Google Scholar
  22. 22.
    Gamache, R.R., Hartmann, J.-M. and Rosenmann, L. (1994) Collisional broadening of water vapor lines: a survey of experimental results J. Quant. Spectrosc. Radial Transf. 52, 481–499.CrossRefGoogle Scholar
  23. 23.
    Gamache, R.R., Lynch, R. and Neshyba, S. (1998) New development in the pressure broadening and pressure shift of spectral lines of H2O; the complex Robert Bonamy formalism, J. Quant. Spectrosc. Radiat. Transf. 59, 319–336.CrossRefGoogle Scholar
  24. 24.
    Massie, S.T. and Goldman, A. (1992) Absorption parameters of very dense molecular spectra for the HITRAN compilation, J. Quant. Spectrosc. and Rad. Transf. 48, 713–719.CrossRefGoogle Scholar
  25. 25.
    Goldman, A., Rinsland, C.-P., Murcray, F.J., Blatherwick, R.D., and Murcray, D.G. (1994) High resolution studies of heavy NOy molecules in atmospheric spectra, J. Quant. Spectrosc. and Rad. Transf. 52, 367–377.CrossRefGoogle Scholar
  26. 26.
    Varanasi, P., Li, Z., Nemtchinov, V., and Cherukuri, A. (1994) Spectral absorption coefficient data of HCFC-22 and SF6 for remote sensing applications, J. Quant. Spectrosc. and Rad. Transf. 52, 323–332.CrossRefGoogle Scholar
  27. 27.
    Domenech, J.L., Flaud, J-M., Fraser,G.T., Andrews, A.M., Lafferty,W.J., and Watson, P.L. (1997) Infrared diode-laser molecular-beam spectrum of the v2 of chlorine nitrate at 1293 cm-1, J. Mol. Spectrosc. 183, 228–233.CrossRefGoogle Scholar
  28. 28.
    Burrows, J.P., Weber, M., Buchwitz, M., Rozanov, V., Ladstatter-Weissenmayer, A., Richter, A., De Beek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D. (1999) The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results, J. Atm. Sci. 56, 151–175.CrossRefGoogle Scholar
  29. 29.
    Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V. and Goede, A.P.H. (1999) SCIAMACHY — Mission objectives and measurements modes, J. Atm. Sci. 56, 127–150.CrossRefGoogle Scholar
  30. 30.
    Krueger, A.J., Walter, L.S., Bhartia, P.K., Schneltzler, C.C., Krotkov, N.A., Sprod, I., Bluth, G.J.S. (1995) Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer (TOMS) instruments, J. Geophys. Res. D100, 14057–14076CrossRefGoogle Scholar
  31. 31.
    Hofmann, D., Bonasoni, P., De Maziere, M., Evangelisti, F., Giovanelli, G., Goldman, A., Goutail, F., Harter, J.W., Jakoubek, R., Johnston, P., Kerr, J., Kerr, W., Matthews, W.A., McElroy, T., McKenzie, R., Mount, G., Platt, H., Pommereau, J.P., Sarkissian, A., Simon, P., Solomon, S., Stutz, J., Thomas, A., Van Roozendael, M., and Wu, E. (1995) Intercomparison of UV/visible spectrometers for measurements of stratospheric NO2 for the Network for the Detection of Stratospheric Change, J. Geophys. Res. D100, 16765–16791.CrossRefGoogle Scholar
  32. 32.
    Vandaele, A.C., Hermans, C., Simon, P.C., Carleer, M., Colin, R., Fally, S., Merienne, M.F., Jenouvrier, A., and Coquart, B. (1998), Measurements of the NO2 absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 mm) at 220 K and 294 K, J. Quant. Spectrosc. and Rad. Transf. 59, 171–184.CrossRefGoogle Scholar
  33. 33.
    Burrows, J.P.., Rischter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt S., and Orphal, J. (1999) Atmospheric remote sensing reference data from GOME-2: Part 2. Temperature dependent absorption cross sections of O3 in the 231-794 nm range, J. Quant. Spectrosc. and Rad. Transf. 61, 509–517.CrossRefGoogle Scholar
  34. 34.
    Chance K., Krosu T.P., Yoshimo K., Parkinson W., Rothman L., Goldman A., and Orphal J. (1999) UV Spectral data for HITRAN2000, Atmospheric Spectrosc. Appl. ASA-1999, Prodeedings 237–242.Google Scholar
  35. 35.
    Massie, S.T. (1994) Indice of refraction for the HITRAN compilation, J. Quant. Spectrosc. and Rad. Transf. 52, 501–513.CrossRefGoogle Scholar
  36. 36.
    Rinsland, C.-P., Gunson, M.R., Wang, P.H., Arduini, R.F., Baum, B.A., Minnis, P., Goldman, A., Abrams, M.C., Zander, R., Mahieu, E., Slawitch, R.J., Michelsen, H.A., Irion, F.W. and Newchurch, M.J. (1998) ATMOS/ATLAS 3 infrared profile measurements of clouds in the troposphere and subtroposphere, J. Quant. Spectrosc. and Rad. Transf. 60, 903–919.CrossRefGoogle Scholar
  37. 37.
    WMO (World Meteorological Organisation), Global Ozone Research and Monitoring Project / United Nations Environment Programme (WMO/UNEP) (1999) Scientific Assessment of Ozone Depletion, 1998, Rep n° 44, Geneva.Google Scholar
  38. 38.
    Rinsland, C.-P., Yue, G.K., Gunson, M.R., Zander, R., and Abrams, M.C. (1994) Mid infrared extinction by sulfate aerosols from Mt Pinatubo eruption, J. Quant. Spectrosc. and Rad. Transf. 52, 241–252.CrossRefGoogle Scholar
  39. 39.
    Liebe, H.J., Rosenkranz, P.W., and Hufford, G.A. (1992) Atmospheric 60-GHz oxygen spectrum: new laboratory measurements and line parameters, J. Quant. Spectrosc. and Rad. Transf. 48, 629–643.CrossRefGoogle Scholar
  40. 40.
    Larrabee Strow, L., Tobin, D.C., and Hannon, S.E. (1994) A compilation of first order line mixing coefficients for CO2 Q branches, J. Quant. Spectrosc. Radiat. Transf. 52, 281–294.CrossRefGoogle Scholar
  41. 41.
    Rodrigues, R., Jucks, K.W., Lacome, N., Blanquet, Gh., Walrand, J., Traub, W.A., Khalil, B., Le Doucen, R., Valentin, A., Camy_Peyret, C., Bonamy, L., and Hartmann, J.-M. (1999) Model, software and database for computation of line mixing effects in infrared Q branches of atmospheric CO2—I symmetric isotopomers, J. Quant. Spectrosc. Radiat. Transf. 61, 153–184.CrossRefGoogle Scholar
  42. 42.
    Hartmann, J.-M., Bouanich, J.P., Jucks, K.W., Blanquet, Gh., Walrand, J., Bermejo, D., Domenech, J.-L., and Lacome, N. (1999) Line mixing effects in N2O Q branches: model, laboratory and atmospheric spectra, J. Chem. Phys. 110, 1959–1969.CrossRefGoogle Scholar
  43. 43.
    Clough, S.A., Kneizys, F.X., and Davies, R.W. (1989) Line shape and the water vapor continuum, Atmospheric Research, 23, 229–241.CrossRefGoogle Scholar
  44. 44.
    Larrabee Strow, L, Robin, D.C., McMillan, W.W., Hannon, S.E., Smith, W.L., Revercomb H.E., and Knuteson, R.O. (1998) Impact of a new water vapor continuum and line shape model on observed high resolution infrared radiance, J. Quant. Spectrosc. Radiat.Transf. 59, 307–317.Google Scholar
  45. 45.
    Thibault, F., Menoux, V., Le Doucen, R., Rosenmann, L., Hartmann, J.-H., and Boulet, Ch. (1997) Infrared collision induced absorption by O2 near 6.4 μm for atmospheric application: measurements and empirical modeling, Appl. Opt. 36, 563–567.CrossRefGoogle Scholar
  46. 46.
    Mlawer, E.J., Clough, S.A., Brown, P.D., Stephen T.M., Landry, J.C., Goldman, A., and Murcray, F.J. (1998) Observed atmospheric collision induced absorption in near infrared oxygen band, J. Geophys. Res. D103, 3859–3863CrossRefGoogle Scholar
  47. 47.
    Lafferty, W.J., Solodov, A..M., Weber, A., Olson, Wm.B. and Hartmann, J.-M. (1996) Infrared collision induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modeling, Appl. Opt. 35, 5911–5917CrossRefGoogle Scholar
  48. 48.
    Rinsland, C.P., Smith, M.A.H., Russell III, J.M., Park, J.H., and Framer, C.B. (1981) Stratospheric measurements of continuous absorption near 2400 cm-1, Appl. Opt. 20, 4167–4171CrossRefGoogle Scholar
  49. 49.
    Kerridge, B.J., Remsberg, E.E. (1989) Evidence from the Limb Infrared Monitor of the Stratosphere for non local thermodynamic equilibrium in the v2 mode of mesospheric water vapor and the v3 mode of stratospheric nitrogen dioxide, J. Geophys. Res. 94, 16323–16342.CrossRefGoogle Scholar
  50. 50.
    Lopez-Puertas, M., Zaragoza, G., Lopez-Valverde, M.A., Martin-Torres, F.J., Shved, G.M., Manuilova, R.O., Kutepov, A.A., Gusev, O., von Clarmann, T., Linden, A., Stiller, G., Wegner, A., Oelhaf, H., Edwards, D.P., and Flaud, J.-M. (1998) Non local thermodynamical equilibrium limb radiances for the MIPAS instrument on Envisat-1, J. Quant. Spectrosc. Radiat.Transf. 59, 377–403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Agnès Perrin
    • 1
  1. 1.Laboratoire de Photophysique Moléculaire, CNRSUniversité Paris-SudOrsay cedexFrance

Personalised recommendations